Fix size_t to int conversion
This commit is contained in:
parent
0e3bbd7026
commit
c68cbfced3
@ -69,8 +69,7 @@ void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, const size_t& ksi
|
|||||||
* A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance,
|
* A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance,
|
||||||
* Journal of Visual Communication and Image Representation 2002
|
* Journal of Visual Communication and Image Representation 2002
|
||||||
*/
|
*/
|
||||||
void image_derivatives_scharr(const cv::Mat& src, cv::Mat& dst,
|
void image_derivatives_scharr(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder) {
|
||||||
const size_t& xorder, const size_t& yorder) {
|
|
||||||
Scharr(src, dst, CV_32F, xorder, yorder, 1.0, 0, BORDER_DEFAULT);
|
Scharr(src, dst, CV_32F, xorder, yorder, 1.0, 0, BORDER_DEFAULT);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -233,8 +232,7 @@ float compute_k_percentile(const cv::Mat& img, float perc, float gscale,
|
|||||||
* @param yorder Derivative order in Y-direction (vertical)
|
* @param yorder Derivative order in Y-direction (vertical)
|
||||||
* @param scale Scale factor for the derivative size
|
* @param scale Scale factor for the derivative size
|
||||||
*/
|
*/
|
||||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, const size_t& xorder,
|
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder, int scale) {
|
||||||
const size_t& yorder, const size_t& scale) {
|
|
||||||
|
|
||||||
Mat kx, ky;
|
Mat kx, ky;
|
||||||
compute_derivative_kernels(kx, ky, xorder, yorder, scale);
|
compute_derivative_kernels(kx, ky, xorder, yorder, scale);
|
||||||
@ -344,10 +342,9 @@ void halfsample_image(const cv::Mat& src, cv::Mat& dst) {
|
|||||||
* @param dy The derivative order in y-direction
|
* @param dy The derivative order in y-direction
|
||||||
* @param scale The kernel size
|
* @param scale The kernel size
|
||||||
*/
|
*/
|
||||||
void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_,
|
void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_, int dx, int dy, int scale) {
|
||||||
const size_t& dx, const size_t& dy, const size_t& scale) {
|
|
||||||
|
|
||||||
const int ksize = 3 + 2 * ( (int)scale - 1);
|
const int ksize = 3 + 2 * (scale - 1);
|
||||||
|
|
||||||
// The usual Scharr kernel
|
// The usual Scharr kernel
|
||||||
if (scale == 1) {
|
if (scale == 1) {
|
||||||
|
@ -23,12 +23,10 @@ void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, co
|
|||||||
void charbonnier_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k);
|
void charbonnier_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k);
|
||||||
float compute_k_percentile(const cv::Mat& img, float perc, float gscale,
|
float compute_k_percentile(const cv::Mat& img, float perc, float gscale,
|
||||||
size_t nbins, size_t ksize_x, size_t ksize_y);
|
size_t nbins, size_t ksize_x, size_t ksize_y);
|
||||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, const size_t& xorder,
|
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int, int scale);
|
||||||
const size_t& yorder, const size_t& scale);
|
|
||||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, const float& stepsize);
|
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, const float& stepsize);
|
||||||
void downsample_image(const cv::Mat& src, cv::Mat& dst);
|
void downsample_image(const cv::Mat& src, cv::Mat& dst);
|
||||||
void halfsample_image(const cv::Mat& src, cv::Mat& dst);
|
void halfsample_image(const cv::Mat& src, cv::Mat& dst);
|
||||||
void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_,
|
void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_, int dx, int dy, int scale);
|
||||||
const size_t& dx, const size_t& dy, const size_t& scale);
|
|
||||||
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value,
|
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value,
|
||||||
int row, int col, bool same_img);
|
int row, int col, bool same_img);
|
||||||
|
@ -43,11 +43,11 @@ using namespace cv;
|
|||||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst,
|
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst,
|
||||||
int ksize_x, int ksize_y, float sigma) {
|
int ksize_x, int ksize_y, float sigma) {
|
||||||
|
|
||||||
size_t ksize_x_ = 0, ksize_y_ = 0;
|
int ksize_x_ = 0, ksize_y_ = 0;
|
||||||
|
|
||||||
// Compute an appropriate kernel size according to the specified sigma
|
// Compute an appropriate kernel size according to the specified sigma
|
||||||
if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) {
|
if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) {
|
||||||
ksize_x_ = (size_t)ceil(2.0f*(1.0f + (sigma-0.8f)/(0.3f)));
|
ksize_x_ = (int)ceil(2.0f*(1.0f + (sigma-0.8f)/(0.3f)));
|
||||||
ksize_y_ = ksize_x_;
|
ksize_y_ = ksize_x_;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -196,7 +196,7 @@ float compute_k_percentile(const cv::Mat& img, float perc, float gscale,
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (nelements < nthreshold) {
|
if (nelements < nthreshold) {
|
||||||
kperc = 0.03;
|
kperc = 0.03f;
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
kperc = hmax*((float)(k)/(float)nbins);
|
kperc = hmax*((float)(k)/(float)nbins);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user