Fixed number of warnings. Fixed mingw64 build.

This commit is contained in:
Andrey Kamaev
2012-06-12 14:46:12 +00:00
parent 02e3afae3a
commit c5aba337e9
110 changed files with 2232 additions and 2367 deletions

View File

@@ -1702,15 +1702,7 @@ class CV_EXPORTS GoodFeaturesToTrackDetector_GPU
{
public:
explicit GoodFeaturesToTrackDetector_GPU(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04)
{
this->maxCorners = maxCorners;
this->qualityLevel = qualityLevel;
this->minDistance = minDistance;
this->blockSize = blockSize;
this->useHarrisDetector = useHarrisDetector;
this->harrisK = harrisK;
}
int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);
//! return 1 rows matrix with CV_32FC2 type
void operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat());
@@ -1742,6 +1734,18 @@ private:
GpuMat tmpCorners_;
};
inline GoodFeaturesToTrackDetector_GPU::GoodFeaturesToTrackDetector_GPU(int maxCorners_, double qualityLevel_, double minDistance_,
int blockSize_, bool useHarrisDetector_, double harrisK_)
{
maxCorners = maxCorners_;
qualityLevel = qualityLevel_;
minDistance = minDistance_;
blockSize = blockSize_;
useHarrisDetector = useHarrisDetector_;
harrisK = harrisK_;
}
class CV_EXPORTS PyrLKOpticalFlow
{
public:

View File

@@ -57,7 +57,7 @@ void cv::gpu::VideoReader_GPU::open(const cv::Ptr<VideoSource>&) { throw_nogpu()
bool cv::gpu::VideoReader_GPU::isOpened() const { return false; }
void cv::gpu::VideoReader_GPU::close() { }
bool cv::gpu::VideoReader_GPU::read(GpuMat&) { throw_nogpu(); return false; }
cv::gpu::VideoReader_GPU::FormatInfo cv::gpu::VideoReader_GPU::format() const { throw_nogpu(); FormatInfo format = {MPEG1,Monochrome,0,0}; return format; }
cv::gpu::VideoReader_GPU::FormatInfo cv::gpu::VideoReader_GPU::format() const { throw_nogpu(); FormatInfo format_ = {MPEG1,Monochrome,0,0}; return format_; }
bool cv::gpu::VideoReader_GPU::VideoSource::parseVideoData(const unsigned char*, size_t, bool) { throw_nogpu(); return false; }
void cv::gpu::VideoReader_GPU::dumpFormat(std::ostream&) { throw_nogpu(); }

View File

@@ -513,7 +513,6 @@ PARAM_TEST_CASE(Filter2D, cv::gpu::DeviceInfo, cv::Size, MatType, KSize, Anchor,
bool useRoi;
cv::Mat img;
cv::Mat kernel;
virtual void SetUp()
{

View File

@@ -150,8 +150,6 @@ PARAM_TEST_CASE(CalcHist, cv::gpu::DeviceInfo, cv::Size)
cv::gpu::DeviceInfo devInfo;
cv::Size size;
cv::Mat src;
cv::Mat hist_gold;
virtual void SetUp()
{
@@ -202,7 +200,7 @@ TEST_P(EqualizeHist, Accuracy)
cv::gpu::GpuMat dst;
cv::gpu::equalizeHist(loadMat(src), dst);
cv::Mat dst_gold;
cv::equalizeHist(src, dst_gold);
@@ -221,8 +219,6 @@ PARAM_TEST_CASE(ColumnSum, cv::gpu::DeviceInfo, cv::Size)
cv::gpu::DeviceInfo devInfo;
cv::Size size;
cv::Mat src;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
@@ -276,8 +272,6 @@ PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, AppertureSize, L2gradient, UseRoi)
bool useL2gradient;
bool useRoi;
cv::Mat edges_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
@@ -361,7 +355,7 @@ TEST_P(MeanShift, Filtering)
else
img_template = readImage("meanshift/con_result_CC1X.png");
ASSERT_FALSE(img_template.empty());
cv::gpu::GpuMat d_dst;
cv::gpu::meanShiftFiltering(loadMat(img), d_dst, spatialRad, colorRad);
@@ -396,7 +390,7 @@ TEST_P(MeanShift, Proc)
cv::gpu::meanShiftProc(loadMat(img), rmap, spmap, spatialRad, colorRad);
ASSERT_EQ(CV_8UC4, rmap.type());
EXPECT_MAT_NEAR(rmap_filtered, rmap, 0.0);
EXPECT_MAT_NEAR(spmap_template, spmap, 0.0);
}
@@ -573,11 +567,6 @@ PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, cv::Size, KSize, Ccorr)
int ksize;
bool ccorr;
cv::Mat src;
cv::Mat kernel;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
@@ -596,7 +585,7 @@ TEST_P(Convolve, Accuracy)
cv::gpu::GpuMat dst;
cv::gpu::convolve(loadMat(src), loadMat(kernel), dst, ccorr);
cv::Mat dst_gold;
convolveDFT(src, kernel, dst_gold, ccorr);
@@ -670,9 +659,6 @@ PARAM_TEST_CASE(MatchTemplate32F, cv::gpu::DeviceInfo, cv::Size, TemplateSize, C
int method;
int n, m, h, w;
cv::Mat image, templ;
cv::Mat dst_gold;
virtual void SetUp()
{
@@ -1080,7 +1066,7 @@ TEST_P(CornerHarris, Accuracy)
cv::gpu::GpuMat dst;
cv::gpu::cornerHarris(loadMat(src), dst, blockSize, apertureSize, k, borderType);
cv::Mat dst_gold;
cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderType);

View File

@@ -69,16 +69,16 @@ struct HOG : testing::TestWithParam<cv::gpu::DeviceInfo>, cv::gpu::HOGDescriptor
}
#ifdef DUMP
void dump(const cv::Mat& block_hists, const std::vector<cv::Point>& locations)
void dump(const cv::Mat& blockHists, const std::vector<cv::Point>& locations)
{
f.write((char*)&block_hists.rows, sizeof(block_hists.rows));
f.write((char*)&block_hists.cols, sizeof(block_hists.cols));
f.write((char*)&blockHists.rows, sizeof(blockHists.rows));
f.write((char*)&blockHists.cols, sizeof(blockHists.cols));
for (int i = 0; i < block_hists.rows; ++i)
for (int i = 0; i < blockHists.rows; ++i)
{
for (int j = 0; j < block_hists.cols; ++j)
for (int j = 0; j < blockHists.cols; ++j)
{
float val = block_hists.at<float>(i, j);
float val = blockHists.at<float>(i, j);
f.write((char*)&val, sizeof(val));
}
}
@@ -90,21 +90,21 @@ struct HOG : testing::TestWithParam<cv::gpu::DeviceInfo>, cv::gpu::HOGDescriptor
f.write((char*)&locations[i], sizeof(locations[i]));
}
#else
void compare(const cv::Mat& block_hists, const std::vector<cv::Point>& locations)
void compare(const cv::Mat& blockHists, const std::vector<cv::Point>& locations)
{
int rows, cols;
f.read((char*)&rows, sizeof(rows));
f.read((char*)&cols, sizeof(cols));
ASSERT_EQ(rows, block_hists.rows);
ASSERT_EQ(cols, block_hists.cols);
ASSERT_EQ(rows, blockHists.rows);
ASSERT_EQ(cols, blockHists.cols);
for (int i = 0; i < block_hists.rows; ++i)
for (int i = 0; i < blockHists.rows; ++i)
{
for (int j = 0; j < block_hists.cols; ++j)
for (int j = 0; j < blockHists.cols; ++j)
{
float val;
f.read((char*)&val, sizeof(val));
ASSERT_NEAR(val, block_hists.at<float>(i, j), 1e-3);
ASSERT_NEAR(val, blockHists.at<float>(i, j), 1e-3);
}
}