moved integral to gpuarithm module

This commit is contained in:
Vladislav Vinogradov
2013-04-09 14:18:18 +04:00
parent 10ac854358
commit c56bdbc1c5
11 changed files with 236 additions and 219 deletions

View File

@@ -6,7 +6,7 @@ set(the_description "GPU-accelerated Operations on Matrices")
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wundef -Wmissing-declarations)
ocv_define_module(gpuarithm opencv_core OPTIONAL opencv_imgproc)
ocv_define_module(gpuarithm opencv_core OPTIONAL opencv_gpunvidia opencv_imgproc)
if(HAVE_CUBLAS)
CUDA_ADD_CUBLAS_TO_TARGET(${the_module})

View File

@@ -283,6 +283,18 @@ CV_EXPORTS void rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, co
CV_EXPORTS void copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, int borderType,
const Scalar& value = Scalar(), Stream& stream = Stream::Null());
//! computes the integral image
//! sum will have CV_32S type, but will contain unsigned int values
//! supports only CV_8UC1 source type
CV_EXPORTS void integral(const GpuMat& src, GpuMat& sum, Stream& stream = Stream::Null());
//! buffered version
CV_EXPORTS void integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, Stream& stream = Stream::Null());
//! computes squared integral image
//! result matrix will have 64F type, but will contain 64U values
//! supports source images of 8UC1 type only
CV_EXPORTS void sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& stream = Stream::Null());
}} // namespace cv { namespace gpu {
#endif /* __OPENCV_GPUARITHM_HPP__ */

View File

@@ -2156,11 +2156,11 @@ PERF_TEST_P(Sz_Depth_NormType, Core_Normalize,
}
}
#ifdef HAVE_OPENCV_IMGPROC
//////////////////////////////////////////////////////////////////////
// CopyMakeBorder
#ifdef HAVE_OPENCV_IMGPROC
DEF_PARAM_TEST(Sz_Depth_Cn_Border, cv::Size, MatDepth, MatCn, BorderMode);
PERF_TEST_P(Sz_Depth_Cn_Border, ImgProc_CopyMakeBorder,
@@ -2198,4 +2198,61 @@ PERF_TEST_P(Sz_Depth_Cn_Border, ImgProc_CopyMakeBorder,
}
}
//////////////////////////////////////////////////////////////////////
// Integral
PERF_TEST_P(Sz, ImgProc_Integral,
GPU_TYPICAL_MAT_SIZES)
{
const cv::Size size = GetParam();
cv::Mat src(size, CV_8UC1);
declare.in(src, WARMUP_RNG);
if (PERF_RUN_GPU())
{
const cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat dst;
cv::gpu::GpuMat d_buf;
TEST_CYCLE() cv::gpu::integralBuffered(d_src, dst, d_buf);
GPU_SANITY_CHECK(dst);
}
else
{
cv::Mat dst;
TEST_CYCLE() cv::integral(src, dst);
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// IntegralSqr
PERF_TEST_P(Sz, ImgProc_IntegralSqr,
GPU_TYPICAL_MAT_SIZES)
{
const cv::Size size = GetParam();
cv::Mat src(size, CV_8UC1);
declare.in(src, WARMUP_RNG);
if (PERF_RUN_GPU())
{
const cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat dst;
TEST_CYCLE() cv::gpu::sqrIntegral(d_src, dst);
GPU_SANITY_CHECK(dst);
}
else
{
FAIL_NO_CPU();
}
}
#endif

View File

@@ -61,6 +61,9 @@ void cv::gpu::polarToCart(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool,
void cv::gpu::normalize(const GpuMat&, GpuMat&, double, double, int, int, const GpuMat&) { throw_no_cuda(); }
void cv::gpu::normalize(const GpuMat&, GpuMat&, double, double, int, int, const GpuMat&, GpuMat&, GpuMat&) { throw_no_cuda(); }
void cv::gpu::copyMakeBorder(const GpuMat&, GpuMat&, int, int, int, int, int, const Scalar&, Stream&) { throw_no_cuda(); }
void cv::gpu::integral(const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
void cv::gpu::integralBuffered(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
void cv::gpu::sqrIntegral(const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
#else /* !defined (HAVE_CUDA) */
@@ -718,4 +721,119 @@ void cv::gpu::copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom
}
}
////////////////////////////////////////////////////////////////////////
// integral
void cv::gpu::integral(const GpuMat& src, GpuMat& sum, Stream& s)
{
GpuMat buffer;
integralBuffered(src, sum, buffer, s);
}
namespace cv { namespace gpu { namespace cudev
{
namespace imgproc
{
void shfl_integral_gpu(const PtrStepSzb& img, PtrStepSz<unsigned int> integral, cudaStream_t stream);
}
}}}
void cv::gpu::integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, Stream& s)
{
CV_Assert(src.type() == CV_8UC1);
cudaStream_t stream = StreamAccessor::getStream(s);
cv::Size whole;
cv::Point offset;
src.locateROI(whole, offset);
if (deviceSupports(WARP_SHUFFLE_FUNCTIONS) && src.cols <= 2048
&& offset.x % 16 == 0 && ((src.cols + 63) / 64) * 64 <= (static_cast<int>(src.step) - offset.x))
{
ensureSizeIsEnough(((src.rows + 7) / 8) * 8, ((src.cols + 63) / 64) * 64, CV_32SC1, buffer);
cv::gpu::cudev::imgproc::shfl_integral_gpu(src, buffer, stream);
sum.create(src.rows + 1, src.cols + 1, CV_32SC1);
if (s)
s.enqueueMemSet(sum, Scalar::all(0));
else
sum.setTo(Scalar::all(0));
GpuMat inner = sum(Rect(1, 1, src.cols, src.rows));
GpuMat res = buffer(Rect(0, 0, src.cols, src.rows));
if (s)
s.enqueueCopy(res, inner);
else
res.copyTo(inner);
}
else
{
#ifndef HAVE_OPENCV_GPUNVIDIA
throw_no_cuda();
#else
sum.create(src.rows + 1, src.cols + 1, CV_32SC1);
NcvSize32u roiSize;
roiSize.width = src.cols;
roiSize.height = src.rows;
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );
Ncv32u bufSize;
ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) );
ensureSizeIsEnough(1, bufSize, CV_8UC1, buffer);
NppStStreamHandler h(stream);
ncvSafeCall( nppiStIntegral_8u32u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>()), static_cast<int>(src.step),
sum.ptr<Ncv32u>(), static_cast<int>(sum.step), roiSize, buffer.ptr<Ncv8u>(), bufSize, prop) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
#endif
}
}
//////////////////////////////////////////////////////////////////////////////
// sqrIntegral
void cv::gpu::sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& s)
{
#ifndef HAVE_OPENCV_GPUNVIDIA
(void) src;
(void) sqsum;
(void) s;
throw_no_cuda();
#else
CV_Assert(src.type() == CV_8U);
NcvSize32u roiSize;
roiSize.width = src.cols;
roiSize.height = src.rows;
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );
Ncv32u bufSize;
ncvSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize, prop));
GpuMat buf(1, bufSize, CV_8U);
cudaStream_t stream = StreamAccessor::getStream(s);
NppStStreamHandler h(stream);
sqsum.create(src.rows + 1, src.cols + 1, CV_64F);
ncvSafeCall(nppiStSqrIntegral_8u64u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>(0)), static_cast<int>(src.step),
sqsum.ptr<Ncv64u>(0), static_cast<int>(sqsum.step), roiSize, buf.ptr<Ncv8u>(0), bufSize, prop));
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
#endif
}
#endif /* !defined (HAVE_CUDA) */

View File

@@ -0,0 +1,472 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/core/cuda/common.hpp"
namespace cv { namespace gpu { namespace cudev
{
namespace imgproc
{
// Utility function to extract unsigned chars from an unsigned integer
__device__ uchar4 int_to_uchar4(unsigned int in)
{
uchar4 bytes;
bytes.x = (in & 0x000000ff) >> 0;
bytes.y = (in & 0x0000ff00) >> 8;
bytes.z = (in & 0x00ff0000) >> 16;
bytes.w = (in & 0xff000000) >> 24;
return bytes;
}
__global__ void shfl_integral_horizontal(const PtrStep<uint4> img, PtrStep<uint4> integral)
{
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
__shared__ int sums[128];
const int id = threadIdx.x;
const int lane_id = id % warpSize;
const int warp_id = id / warpSize;
const uint4 data = img(blockIdx.x, id);
const uchar4 a = int_to_uchar4(data.x);
const uchar4 b = int_to_uchar4(data.y);
const uchar4 c = int_to_uchar4(data.z);
const uchar4 d = int_to_uchar4(data.w);
int result[16];
result[0] = a.x;
result[1] = result[0] + a.y;
result[2] = result[1] + a.z;
result[3] = result[2] + a.w;
result[4] = result[3] + b.x;
result[5] = result[4] + b.y;
result[6] = result[5] + b.z;
result[7] = result[6] + b.w;
result[8] = result[7] + c.x;
result[9] = result[8] + c.y;
result[10] = result[9] + c.z;
result[11] = result[10] + c.w;
result[12] = result[11] + d.x;
result[13] = result[12] + d.y;
result[14] = result[13] + d.z;
result[15] = result[14] + d.w;
int sum = result[15];
// the prefix sum for each thread's 16 value is computed,
// now the final sums (result[15]) need to be shared
// with the other threads and add. To do this,
// the __shfl_up() instruction is used and a shuffle scan
// operation is performed to distribute the sums to the correct
// threads
#pragma unroll
for (int i = 1; i < 32; i *= 2)
{
const int n = __shfl_up(sum, i, 32);
if (lane_id >= i)
{
#pragma unroll
for (int i = 0; i < 16; ++i)
result[i] += n;
sum += n;
}
}
// Now the final sum for the warp must be shared
// between warps. This is done by each warp
// having a thread store to shared memory, then
// having some other warp load the values and
// compute a prefix sum, again by using __shfl_up.
// The results are uniformly added back to the warps.
// last thread in the warp holding sum of the warp
// places that in shared
if (threadIdx.x % warpSize == warpSize - 1)
sums[warp_id] = result[15];
__syncthreads();
if (warp_id == 0)
{
int warp_sum = sums[lane_id];
#pragma unroll
for (int i = 1; i <= 32; i *= 2)
{
const int n = __shfl_up(warp_sum, i, 32);
if (lane_id >= i)
warp_sum += n;
}
sums[lane_id] = warp_sum;
}
__syncthreads();
int blockSum = 0;
// fold in unused warp
if (warp_id > 0)
{
blockSum = sums[warp_id - 1];
#pragma unroll
for (int i = 0; i < 16; ++i)
result[i] += blockSum;
}
// assemble result
// Each thread has 16 values to write, which are
// now integer data (to avoid overflow). Instead of
// each thread writing consecutive uint4s, the
// approach shown here experiments using
// the shuffle command to reformat the data
// inside the registers so that each thread holds
// consecutive data to be written so larger contiguous
// segments can be assembled for writing.
/*
For example data that needs to be written as
GMEM[16] <- x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3 w0 w1 w2 w3
but is stored in registers (r0..r3), in four threads (0..3) as:
threadId 0 1 2 3
r0 x0 y0 z0 w0
r1 x1 y1 z1 w1
r2 x2 y2 z2 w2
r3 x3 y3 z3 w3
after apply __shfl_xor operations to move data between registers r1..r3:
threadId 00 01 10 11
x0 y0 z0 w0
xor(01)->y1 x1 w1 z1
xor(10)->z2 w2 x2 y2
xor(11)->w3 z3 y3 x3
and now x0..x3, and z0..z3 can be written out in order by all threads.
In the current code, each register above is actually representing
four integers to be written as uint4's to GMEM.
*/
result[4] = __shfl_xor(result[4] , 1, 32);
result[5] = __shfl_xor(result[5] , 1, 32);
result[6] = __shfl_xor(result[6] , 1, 32);
result[7] = __shfl_xor(result[7] , 1, 32);
result[8] = __shfl_xor(result[8] , 2, 32);
result[9] = __shfl_xor(result[9] , 2, 32);
result[10] = __shfl_xor(result[10], 2, 32);
result[11] = __shfl_xor(result[11], 2, 32);
result[12] = __shfl_xor(result[12], 3, 32);
result[13] = __shfl_xor(result[13], 3, 32);
result[14] = __shfl_xor(result[14], 3, 32);
result[15] = __shfl_xor(result[15], 3, 32);
uint4* integral_row = integral.ptr(blockIdx.x);
uint4 output;
///////
if (threadIdx.x % 4 == 0)
output = make_uint4(result[0], result[1], result[2], result[3]);
if (threadIdx.x % 4 == 1)
output = make_uint4(result[4], result[5], result[6], result[7]);
if (threadIdx.x % 4 == 2)
output = make_uint4(result[8], result[9], result[10], result[11]);
if (threadIdx.x % 4 == 3)
output = make_uint4(result[12], result[13], result[14], result[15]);
integral_row[threadIdx.x % 4 + (threadIdx.x / 4) * 16] = output;
///////
if (threadIdx.x % 4 == 2)
output = make_uint4(result[0], result[1], result[2], result[3]);
if (threadIdx.x % 4 == 3)
output = make_uint4(result[4], result[5], result[6], result[7]);
if (threadIdx.x % 4 == 0)
output = make_uint4(result[8], result[9], result[10], result[11]);
if (threadIdx.x % 4 == 1)
output = make_uint4(result[12], result[13], result[14], result[15]);
integral_row[(threadIdx.x + 2) % 4 + (threadIdx.x / 4) * 16 + 8] = output;
// continuning from the above example,
// this use of __shfl_xor() places the y0..y3 and w0..w3 data
// in order.
#pragma unroll
for (int i = 0; i < 16; ++i)
result[i] = __shfl_xor(result[i], 1, 32);
if (threadIdx.x % 4 == 0)
output = make_uint4(result[0], result[1], result[2], result[3]);
if (threadIdx.x % 4 == 1)
output = make_uint4(result[4], result[5], result[6], result[7]);
if (threadIdx.x % 4 == 2)
output = make_uint4(result[8], result[9], result[10], result[11]);
if (threadIdx.x % 4 == 3)
output = make_uint4(result[12], result[13], result[14], result[15]);
integral_row[threadIdx.x % 4 + (threadIdx.x / 4) * 16 + 4] = output;
///////
if (threadIdx.x % 4 == 2)
output = make_uint4(result[0], result[1], result[2], result[3]);
if (threadIdx.x % 4 == 3)
output = make_uint4(result[4], result[5], result[6], result[7]);
if (threadIdx.x % 4 == 0)
output = make_uint4(result[8], result[9], result[10], result[11]);
if (threadIdx.x % 4 == 1)
output = make_uint4(result[12], result[13], result[14], result[15]);
integral_row[(threadIdx.x + 2) % 4 + (threadIdx.x / 4) * 16 + 12] = output;
#endif
}
// This kernel computes columnwise prefix sums. When the data input is
// the row sums from above, this completes the integral image.
// The approach here is to have each block compute a local set of sums.
// First , the data covered by the block is loaded into shared memory,
// then instead of performing a sum in shared memory using __syncthreads
// between stages, the data is reformatted so that the necessary sums
// occur inside warps and the shuffle scan operation is used.
// The final set of sums from the block is then propgated, with the block
// computing "down" the image and adding the running sum to the local
// block sums.
__global__ void shfl_integral_vertical(PtrStepSz<unsigned int> integral)
{
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
__shared__ unsigned int sums[32][9];
const int tidx = blockIdx.x * blockDim.x + threadIdx.x;
const int lane_id = tidx % 8;
if (tidx >= integral.cols)
return;
sums[threadIdx.x][threadIdx.y] = 0;
__syncthreads();
unsigned int stepSum = 0;
for (int y = threadIdx.y; y < integral.rows; y += blockDim.y)
{
unsigned int* p = integral.ptr(y) + tidx;
unsigned int sum = *p;
sums[threadIdx.x][threadIdx.y] = sum;
__syncthreads();
// place into SMEM
// shfl scan reduce the SMEM, reformating so the column
// sums are computed in a warp
// then read out properly
const int j = threadIdx.x % 8;
const int k = threadIdx.x / 8 + threadIdx.y * 4;
int partial_sum = sums[k][j];
for (int i = 1; i <= 8; i *= 2)
{
int n = __shfl_up(partial_sum, i, 32);
if (lane_id >= i)
partial_sum += n;
}
sums[k][j] = partial_sum;
__syncthreads();
if (threadIdx.y > 0)
sum += sums[threadIdx.x][threadIdx.y - 1];
sum += stepSum;
stepSum += sums[threadIdx.x][blockDim.y - 1];
__syncthreads();
*p = sum;
}
#endif
}
void shfl_integral_gpu(const PtrStepSzb& img, PtrStepSz<unsigned int> integral, cudaStream_t stream)
{
{
// each thread handles 16 values, use 1 block/row
// save, becouse step is actually can't be less 512 bytes
int block = integral.cols / 16;
// launch 1 block / row
const int grid = img.rows;
cudaSafeCall( cudaFuncSetCacheConfig(shfl_integral_horizontal, cudaFuncCachePreferL1) );
shfl_integral_horizontal<<<grid, block, 0, stream>>>((const PtrStepSz<uint4>) img, (PtrStepSz<uint4>) integral);
cudaSafeCall( cudaGetLastError() );
}
{
const dim3 block(32, 8);
const dim3 grid(divUp(integral.cols, block.x), 1);
shfl_integral_vertical<<<grid, block, 0, stream>>>(integral);
cudaSafeCall( cudaGetLastError() );
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void shfl_integral_vertical(PtrStepSz<unsigned int> buffer, PtrStepSz<unsigned int> integral)
{
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
__shared__ unsigned int sums[32][9];
const int tidx = blockIdx.x * blockDim.x + threadIdx.x;
const int lane_id = tidx % 8;
if (tidx >= integral.cols)
return;
sums[threadIdx.x][threadIdx.y] = 0;
__syncthreads();
unsigned int stepSum = 0;
for (int y = threadIdx.y; y < integral.rows; y += blockDim.y)
{
unsigned int* p = buffer.ptr(y) + tidx;
unsigned int* dst = integral.ptr(y + 1) + tidx + 1;
unsigned int sum = *p;
sums[threadIdx.x][threadIdx.y] = sum;
__syncthreads();
// place into SMEM
// shfl scan reduce the SMEM, reformating so the column
// sums are computed in a warp
// then read out properly
const int j = threadIdx.x % 8;
const int k = threadIdx.x / 8 + threadIdx.y * 4;
int partial_sum = sums[k][j];
for (int i = 1; i <= 8; i *= 2)
{
int n = __shfl_up(partial_sum, i, 32);
if (lane_id >= i)
partial_sum += n;
}
sums[k][j] = partial_sum;
__syncthreads();
if (threadIdx.y > 0)
sum += sums[threadIdx.x][threadIdx.y - 1];
sum += stepSum;
stepSum += sums[threadIdx.x][blockDim.y - 1];
__syncthreads();
*dst = sum;
}
#endif
}
// used for frame preprocessing before Soft Cascade evaluation: no synchronization needed
void shfl_integral_gpu_buffered(PtrStepSzb img, PtrStepSz<uint4> buffer, PtrStepSz<unsigned int> integral,
int blockStep, cudaStream_t stream)
{
{
const int block = blockStep;
const int grid = img.rows;
cudaSafeCall( cudaFuncSetCacheConfig(shfl_integral_horizontal, cudaFuncCachePreferL1) );
shfl_integral_horizontal<<<grid, block, 0, stream>>>((PtrStepSz<uint4>) img, buffer);
cudaSafeCall( cudaGetLastError() );
}
{
const dim3 block(32, 8);
const dim3 grid(divUp(integral.cols, block.x), 1);
shfl_integral_vertical<<<grid, block, 0, stream>>>((PtrStepSz<uint>)buffer, integral);
cudaSafeCall( cudaGetLastError() );
}
}
}
}}}
#endif /* CUDA_DISABLER */

View File

@@ -51,6 +51,13 @@
#include "opencv2/core/gpu_private.hpp"
#include "opencv2/opencv_modules.hpp"
#ifdef HAVE_OPENCV_GPUNVIDIA
# include "opencv2/gpunvidia.hpp"
# include "opencv2/gpunvidia/private.hpp"
#endif
#ifdef HAVE_CUBLAS
#include <cublas.h>
#endif

View File

@@ -3607,11 +3607,11 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Normalize, testing::Combine(
testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2), NormCode(cv::NORM_INF), NormCode(cv::NORM_MINMAX)),
WHOLE_SUBMAT));
#ifdef HAVE_OPENCV_IMGPROC
//////////////////////////////////////////////////////////////////////////////
// CopyMakeBorder
#ifdef HAVE_OPENCV_IMGPROC
namespace
{
IMPLEMENT_PARAM_CLASS(Border, int)
@@ -3669,6 +3669,43 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CopyMakeBorder, testing::Combine(
ALL_BORDER_TYPES,
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Integral
PARAM_TEST_CASE(Integral, cv::gpu::DeviceInfo, cv::Size, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
}
};
GPU_TEST_P(Integral, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
cv::gpu::GpuMat dst = createMat(cv::Size(src.cols + 1, src.rows + 1), CV_32SC1, useRoi);
cv::gpu::integral(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::integral(src, dst_gold, CV_32S);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Integral, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
WHOLE_SUBMAT));
#endif
#endif // HAVE_CUDA