Doxygen tutorials: warnings cleared

This commit is contained in:
Maksim Shabunin
2014-11-27 19:54:13 +03:00
parent 8375182e34
commit c5536534d8
64 changed files with 889 additions and 1659 deletions

View File

@@ -7,7 +7,7 @@ Goal
In this tutorial you will learn:
- What an image histogram is and why it is useful
- To equalize histograms of images by using the OpenCV <function@ref> cv::equalizeHist
- To equalize histograms of images by using the OpenCV function @ref cv::equalizeHist
Theory
------
@@ -59,54 +59,13 @@ Code
- **What does this program do?**
- Loads an image
- Convert the original image to grayscale
- Equalize the Histogram by using the OpenCV function @ref cv::EqualizeHist
- Equalize the Histogram by using the OpenCV function @ref cv::equalizeHist
- Display the source and equalized images in a window.
- **Downloadable code**: Click
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/Histograms_Matching/EqualizeHist_Demo.cpp)
- **Code at glance:**
@code{.cpp}
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
#include <stdio.h>
@includelineno samples/cpp/tutorial_code/Histograms_Matching/EqualizeHist_Demo.cpp
using namespace cv;
using namespace std;
/* @function main */
int main( int argc, char** argv )
{
Mat src, dst;
char* source_window = "Source image";
char* equalized_window = "Equalized Image";
/// Load image
src = imread( argv[1], 1 );
if( !src.data )
{ cout<<"Usage: ./Histogram_Demo <path_to_image>"<<endl;
return -1;}
/// Convert to grayscale
cvtColor( src, src, COLOR_BGR2GRAY );
/// Apply Histogram Equalization
equalizeHist( src, dst );
/// Display results
namedWindow( source_window, WINDOW_AUTOSIZE );
namedWindow( equalized_window, WINDOW_AUTOSIZE );
imshow( source_window, src );
imshow( equalized_window, dst );
/// Wait until user exits the program
waitKey(0);
return 0;
}
@endcode
Explanation
-----------
@@ -149,6 +108,7 @@ Explanation
waitKey(0);
return 0;
@endcode
Results
-------
@@ -173,8 +133,6 @@ Results
Notice how the number of pixels is more distributed through the intensity range.
**note**
@note
Are you wondering how did we draw the Histogram figures shown above? Check out the following
tutorial!