gpu version of HoughCircles
This commit is contained in:
@@ -57,7 +57,7 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
__global__ void buildPointList(const DevMem2Db src, unsigned int* list)
|
||||
{
|
||||
__shared__ int s_queues[4][32 * PIXELS_PER_THREAD];
|
||||
__shared__ unsigned int s_queues[4][32 * PIXELS_PER_THREAD];
|
||||
__shared__ int s_qsize[4];
|
||||
__shared__ int s_globStart[4];
|
||||
|
||||
@@ -211,8 +211,6 @@ namespace cv { namespace gpu { namespace device
|
||||
const dim3 block(has20 ? 1024 : 512);
|
||||
const dim3 grid(accum.rows - 2);
|
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(linesAccumShared, cudaFuncCachePreferShared) );
|
||||
|
||||
size_t smemSize = (accum.cols - 1) * sizeof(int);
|
||||
|
||||
if (smemSize < sharedMemPerBlock - 1000)
|
||||
@@ -230,28 +228,19 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
__global__ void linesGetResult(const DevMem2Di accum, float2* out, int* votes, const int maxSize, const float rho, const float theta, const float threshold, const int numrho)
|
||||
{
|
||||
__shared__ int smem[8][32];
|
||||
const int r = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int n = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const int x = blockIdx.x * (blockDim.x - 2) + threadIdx.x;
|
||||
const int y = blockIdx.y * (blockDim.y - 2) + threadIdx.y;
|
||||
|
||||
if (x >= accum.cols || y >= accum.rows)
|
||||
if (r >= accum.cols - 2 && n >= accum.rows - 2)
|
||||
return;
|
||||
|
||||
smem[threadIdx.y][threadIdx.x] = accum(y, x);
|
||||
__syncthreads();
|
||||
const int curVotes = accum(n + 1, r + 1);
|
||||
|
||||
const int r = x - 1;
|
||||
const int n = y - 1;
|
||||
|
||||
if (threadIdx.x == 0 || threadIdx.x == blockDim.x - 1 || threadIdx.y == 0 || threadIdx.y == blockDim.y - 1 || r >= accum.cols - 2 || n >= accum.rows - 2)
|
||||
return;
|
||||
|
||||
if (smem[threadIdx.y][threadIdx.x] > threshold &&
|
||||
smem[threadIdx.y][threadIdx.x] > smem[threadIdx.y - 1][threadIdx.x] &&
|
||||
smem[threadIdx.y][threadIdx.x] >= smem[threadIdx.y + 1][threadIdx.x] &&
|
||||
smem[threadIdx.y][threadIdx.x] > smem[threadIdx.y][threadIdx.x - 1] &&
|
||||
smem[threadIdx.y][threadIdx.x] >= smem[threadIdx.y][threadIdx.x + 1])
|
||||
if (curVotes > threshold &&
|
||||
curVotes > accum(n + 1, r) &&
|
||||
curVotes >= accum(n + 1, r + 2) &&
|
||||
curVotes > accum(n, r + 1) &&
|
||||
curVotes >= accum(n + 2, r + 1))
|
||||
{
|
||||
const float radius = (r - (numrho - 1) * 0.5f) * rho;
|
||||
const float angle = n * theta;
|
||||
@@ -260,7 +249,7 @@ namespace cv { namespace gpu { namespace device
|
||||
if (ind < maxSize)
|
||||
{
|
||||
out[ind] = make_float2(radius, angle);
|
||||
votes[ind] = smem[threadIdx.y][threadIdx.x];
|
||||
votes[ind] = curVotes;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -273,7 +262,9 @@ namespace cv { namespace gpu { namespace device
|
||||
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
|
||||
|
||||
const dim3 block(32, 8);
|
||||
const dim3 grid(divUp(accum.cols, block.x - 2), divUp(accum.rows, block.y - 2));
|
||||
const dim3 grid(divUp(accum.cols - 2, block.x), divUp(accum.rows - 2, block.y));
|
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(linesGetResult, cudaFuncCachePreferL1) );
|
||||
|
||||
linesGetResult<<<grid, block>>>(accum, out, votes, maxSize, rho, theta, threshold, accum.cols - 2);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
@@ -294,5 +285,202 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
return totalCount;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// circlesAccumCenters
|
||||
|
||||
__global__ void circlesAccumCenters(const unsigned int* list, const int count, const PtrStepi dx, const PtrStepi dy,
|
||||
PtrStepi accum, const int width, const int height, const int minRadius, const int maxRadius, const float idp)
|
||||
{
|
||||
const int SHIFT = 10;
|
||||
const int ONE = 1 << SHIFT;
|
||||
|
||||
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (tid >= count)
|
||||
return;
|
||||
|
||||
const unsigned int val = list[tid];
|
||||
|
||||
const int x = (val & 0xFFFF);
|
||||
const int y = (val >> 16) & 0xFFFF;
|
||||
|
||||
const int vx = dx(y, x);
|
||||
const int vy = dy(y, x);
|
||||
|
||||
if (vx == 0 && vy == 0)
|
||||
return;
|
||||
|
||||
const float mag = ::sqrtf(vx * vx + vy * vy);
|
||||
|
||||
const int x0 = __float2int_rn((x * idp) * ONE);
|
||||
const int y0 = __float2int_rn((y * idp) * ONE);
|
||||
|
||||
int sx = __float2int_rn((vx * idp) * ONE / mag);
|
||||
int sy = __float2int_rn((vy * idp) * ONE / mag);
|
||||
|
||||
// Step from minRadius to maxRadius in both directions of the gradient
|
||||
for (int k1 = 0; k1 < 2; ++k1)
|
||||
{
|
||||
int x1 = x0 + minRadius * sx;
|
||||
int y1 = y0 + minRadius * sy;
|
||||
|
||||
for (int r = minRadius; r <= maxRadius; x1 += sx, y1 += sy, ++r)
|
||||
{
|
||||
const int x2 = x1 >> SHIFT;
|
||||
const int y2 = y1 >> SHIFT;
|
||||
|
||||
if (x2 < 0 || x2 >= width || y2 < 0 || y2 >= height)
|
||||
break;
|
||||
|
||||
::atomicAdd(accum.ptr(y2 + 1) + x2 + 1, 1);
|
||||
}
|
||||
|
||||
sx = -sx;
|
||||
sy = -sy;
|
||||
}
|
||||
}
|
||||
|
||||
void circlesAccumCenters_gpu(const unsigned int* list, int count, PtrStepi dx, PtrStepi dy, DevMem2Di accum, int minRadius, int maxRadius, float idp)
|
||||
{
|
||||
const dim3 block(256);
|
||||
const dim3 grid(divUp(count, block.x));
|
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(circlesAccumCenters, cudaFuncCachePreferL1) );
|
||||
|
||||
circlesAccumCenters<<<grid, block>>>(list, count, dx, dy, accum, accum.cols - 2, accum.rows - 2, minRadius, maxRadius, idp);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// buildCentersList
|
||||
|
||||
__global__ void buildCentersList(const DevMem2Di accum, unsigned int* centers, const int threshold)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x < accum.cols - 2 && y < accum.rows - 2)
|
||||
{
|
||||
const int top = accum(y, x + 1);
|
||||
|
||||
const int left = accum(y + 1, x);
|
||||
const int cur = accum(y + 1, x + 1);
|
||||
const int right = accum(y + 1, x + 2);
|
||||
|
||||
const int bottom = accum(y + 2, x + 1);
|
||||
|
||||
if (cur > threshold && cur > top && cur >= bottom && cur > left && cur >= right)
|
||||
{
|
||||
const unsigned int val = (y << 16) | x;
|
||||
const int idx = ::atomicAdd(&g_counter, 1);
|
||||
centers[idx] = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int buildCentersList_gpu(DevMem2Di accum, unsigned int* centers, int threshold)
|
||||
{
|
||||
void* counterPtr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
|
||||
|
||||
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
|
||||
|
||||
const dim3 block(32, 8);
|
||||
const dim3 grid(divUp(accum.cols - 2, block.x), divUp(accum.rows - 2, block.y));
|
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(buildCentersList, cudaFuncCachePreferL1) );
|
||||
|
||||
buildCentersList<<<grid, block>>>(accum, centers, threshold);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
int totalCount;
|
||||
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
return totalCount;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// circlesAccumRadius
|
||||
|
||||
__global__ void circlesAccumRadius(const unsigned int* centers, const unsigned int* list, const int count,
|
||||
float3* circles, const int maxCircles, const float dp,
|
||||
const int minRadius, const int maxRadius, const int histSize, const int threshold)
|
||||
{
|
||||
extern __shared__ int smem[];
|
||||
|
||||
for (int i = threadIdx.x; i < histSize + 2; i += blockDim.x)
|
||||
smem[i] = 0;
|
||||
__syncthreads();
|
||||
|
||||
unsigned int val = centers[blockIdx.x];
|
||||
|
||||
float cx = (val & 0xFFFF);
|
||||
float cy = (val >> 16) & 0xFFFF;
|
||||
|
||||
cx = (cx + 0.5f) * dp;
|
||||
cy = (cy + 0.5f) * dp;
|
||||
|
||||
for (int i = threadIdx.x; i < count; i += blockDim.x)
|
||||
{
|
||||
val = list[i];
|
||||
|
||||
const int x = (val & 0xFFFF);
|
||||
const int y = (val >> 16) & 0xFFFF;
|
||||
|
||||
const float rad = ::sqrtf((cx - x) * (cx - x) + (cy - y) * (cy - y));
|
||||
if (rad >= minRadius && rad <= maxRadius)
|
||||
{
|
||||
const int r = __float2int_rn(rad - minRadius);
|
||||
|
||||
Emulation::smem::atomicAdd(&smem[r + 1], 1);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
for (int i = threadIdx.x; i < histSize; i += blockDim.x)
|
||||
{
|
||||
const int curVotes = smem[i + 1];
|
||||
|
||||
if (curVotes >= threshold && curVotes > smem[i] && curVotes >= smem[i + 2])
|
||||
{
|
||||
const int ind = ::atomicAdd(&g_counter, 1);
|
||||
if (ind < maxCircles)
|
||||
circles[ind] = make_float3(cx, cy, i + minRadius);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int circlesAccumRadius_gpu(const unsigned int* centers, int centersCount, const unsigned int* list, int count,
|
||||
float3* circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold, bool has20)
|
||||
{
|
||||
void* counterPtr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
|
||||
|
||||
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
|
||||
|
||||
const dim3 block(has20 ? 1024 : 512);
|
||||
const dim3 grid(centersCount);
|
||||
|
||||
const int histSize = ::ceil(maxRadius - minRadius + 1);
|
||||
size_t smemSize = (histSize + 2) * sizeof(int);
|
||||
|
||||
circlesAccumRadius<<<grid, block, smemSize>>>(centers, list, count, circles, maxCircles, dp, minRadius, maxRadius, histSize, threshold);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
int totalCount;
|
||||
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
totalCount = ::min(totalCount, maxCircles);
|
||||
|
||||
return totalCount;
|
||||
}
|
||||
}
|
||||
}}}
|
||||
|
@@ -44,12 +44,14 @@
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
void cv::gpu::HoughLinesTransform(const GpuMat&, GpuMat&, GpuMat&, float, float) { throw_nogpu(); }
|
||||
void cv::gpu::HoughLinesGet(const GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); }
|
||||
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); }
|
||||
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); }
|
||||
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, HoughLinesBuf&, float, float, int, bool, int) { throw_nogpu(); }
|
||||
void cv::gpu::HoughLinesDownload(const GpuMat&, OutputArray, OutputArray) { throw_nogpu(); }
|
||||
|
||||
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, int, float, float, int, int, int, int, int) { throw_nogpu(); }
|
||||
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, HoughCirclesBuf&, int, float, float, int, int, int, int, int) { throw_nogpu(); }
|
||||
void cv::gpu::HoughCirclesDownload(const GpuMat&, OutputArray) { throw_nogpu(); }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
@@ -60,6 +62,11 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
void linesAccum_gpu(const unsigned int* list, int count, DevMem2Di accum, float rho, float theta, size_t sharedMemPerBlock, bool has20);
|
||||
int linesGetResult_gpu(DevMem2Di accum, float2* out, int* votes, int maxSize, float rho, float theta, float threshold, bool doSort);
|
||||
|
||||
void circlesAccumCenters_gpu(const unsigned int* list, int count, PtrStepi dx, PtrStepi dy, DevMem2Di accum, int minRadius, int maxRadius, float idp);
|
||||
int buildCentersList_gpu(DevMem2Di accum, unsigned int* centers, int threshold);
|
||||
int circlesAccumRadius_gpu(const unsigned int* centers, int centersCount, const unsigned int* list, int count,
|
||||
float3* circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold, bool has20);
|
||||
}
|
||||
}}}
|
||||
|
||||
@@ -68,17 +75,11 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort, int maxLines)
|
||||
{
|
||||
GpuMat accum, buf;
|
||||
HoughLines(src, lines, accum, buf, rho, theta, threshold, doSort, maxLines);
|
||||
HoughLinesBuf buf;
|
||||
HoughLines(src, lines, buf, rho, theta, threshold, doSort, maxLines);
|
||||
}
|
||||
|
||||
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, GpuMat& accum, GpuMat& buf, float rho, float theta, int threshold, bool doSort, int maxLines)
|
||||
{
|
||||
HoughLinesTransform(src, accum, buf, rho, theta);
|
||||
HoughLinesGet(accum, lines, rho, theta, threshold, doSort, maxLines);
|
||||
}
|
||||
|
||||
void cv::gpu::HoughLinesTransform(const GpuMat& src, GpuMat& accum, GpuMat& buf, float rho, float theta)
|
||||
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort, int maxLines)
|
||||
{
|
||||
using namespace cv::gpu::device::hough;
|
||||
|
||||
@@ -86,36 +87,31 @@ void cv::gpu::HoughLinesTransform(const GpuMat& src, GpuMat& accum, GpuMat& buf,
|
||||
CV_Assert(src.cols < std::numeric_limits<unsigned short>::max());
|
||||
CV_Assert(src.rows < std::numeric_limits<unsigned short>::max());
|
||||
|
||||
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf);
|
||||
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.list);
|
||||
unsigned int* srcPoints = buf.list.ptr<unsigned int>();
|
||||
|
||||
const int count = buildPointList_gpu(src, buf.ptr<unsigned int>());
|
||||
const int pointsCount = buildPointList_gpu(src, srcPoints);
|
||||
if (pointsCount == 0)
|
||||
{
|
||||
lines.release();
|
||||
return;
|
||||
}
|
||||
|
||||
const int numangle = cvRound(CV_PI / theta);
|
||||
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
|
||||
|
||||
CV_Assert(numangle > 0 && numrho > 0);
|
||||
|
||||
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum);
|
||||
accum.setTo(Scalar::all(0));
|
||||
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, buf.accum);
|
||||
buf.accum.setTo(Scalar::all(0));
|
||||
|
||||
DeviceInfo devInfo;
|
||||
|
||||
if (count > 0)
|
||||
linesAccum_gpu(buf.ptr<unsigned int>(), count, accum, rho, theta, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
|
||||
}
|
||||
|
||||
void cv::gpu::HoughLinesGet(const GpuMat& accum, GpuMat& lines, float rho, float theta, int threshold, bool doSort, int maxLines)
|
||||
{
|
||||
using namespace cv::gpu::device::hough;
|
||||
|
||||
CV_Assert(accum.type() == CV_32SC1);
|
||||
linesAccum_gpu(srcPoints, pointsCount, buf.accum, rho, theta, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
|
||||
|
||||
ensureSizeIsEnough(2, maxLines, CV_32FC2, lines);
|
||||
|
||||
int count = linesGetResult_gpu(accum, lines.ptr<float2>(0), lines.ptr<int>(1), maxLines, rho, theta, (float)threshold, doSort);
|
||||
|
||||
if (count > 0)
|
||||
lines.cols = count;
|
||||
int linesCount = linesGetResult_gpu(buf.accum, lines.ptr<float2>(0), lines.ptr<int>(1), maxLines, rho, theta, threshold, doSort);
|
||||
if (linesCount > 0)
|
||||
lines.cols = linesCount;
|
||||
else
|
||||
lines.release();
|
||||
}
|
||||
@@ -145,4 +141,155 @@ void cv::gpu::HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines_, Ou
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// HoughCircles
|
||||
|
||||
void cv::gpu::HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
|
||||
{
|
||||
HoughCirclesBuf buf;
|
||||
HoughCircles(src, circles, buf, method, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles);
|
||||
}
|
||||
|
||||
void cv::gpu::HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method,
|
||||
float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
|
||||
{
|
||||
using namespace cv::gpu::device::hough;
|
||||
|
||||
CV_Assert(src.type() == CV_8UC1);
|
||||
CV_Assert(src.cols < std::numeric_limits<unsigned short>::max());
|
||||
CV_Assert(src.rows < std::numeric_limits<unsigned short>::max());
|
||||
CV_Assert(method == CV_HOUGH_GRADIENT);
|
||||
CV_Assert(dp > 0);
|
||||
CV_Assert(minRadius > 0 && maxRadius > minRadius);
|
||||
CV_Assert(cannyThreshold > 0);
|
||||
CV_Assert(votesThreshold > 0);
|
||||
CV_Assert(maxCircles > 0);
|
||||
|
||||
const float idp = 1.0f / dp;
|
||||
|
||||
cv::gpu::Canny(src, buf.cannyBuf, buf.edges, std::max(cannyThreshold / 2, 1), cannyThreshold);
|
||||
|
||||
ensureSizeIsEnough(2, src.size().area(), CV_32SC1, buf.list);
|
||||
unsigned int* srcPoints = buf.list.ptr<unsigned int>(0);
|
||||
unsigned int* centers = buf.list.ptr<unsigned int>(1);
|
||||
|
||||
const int pointsCount = buildPointList_gpu(buf.edges, srcPoints);
|
||||
if (pointsCount == 0)
|
||||
{
|
||||
circles.release();
|
||||
return;
|
||||
}
|
||||
|
||||
ensureSizeIsEnough(cvCeil(src.rows * idp) + 2, cvCeil(src.cols * idp) + 2, CV_32SC1, buf.accum);
|
||||
buf.accum.setTo(Scalar::all(0));
|
||||
|
||||
circlesAccumCenters_gpu(srcPoints, pointsCount, buf.cannyBuf.dx, buf.cannyBuf.dy, buf.accum, minRadius, maxRadius, idp);
|
||||
|
||||
int centersCount = buildCentersList_gpu(buf.accum, centers, votesThreshold);
|
||||
if (centersCount == 0)
|
||||
{
|
||||
circles.release();
|
||||
return;
|
||||
}
|
||||
|
||||
if (minDist > 1)
|
||||
{
|
||||
cv::AutoBuffer<ushort2> oldBuf_(centersCount);
|
||||
cv::AutoBuffer<ushort2> newBuf_(centersCount);
|
||||
int newCount = 0;
|
||||
|
||||
ushort2* oldBuf = oldBuf_;
|
||||
ushort2* newBuf = newBuf_;
|
||||
|
||||
cudaSafeCall( cudaMemcpy(oldBuf, centers, centersCount * sizeof(ushort2), cudaMemcpyDeviceToHost) );
|
||||
|
||||
const int cellSize = cvRound(minDist);
|
||||
const int gridWidth = (src.cols + cellSize - 1) / cellSize;
|
||||
const int gridHeight = (src.rows + cellSize - 1) / cellSize;
|
||||
|
||||
std::vector< std::vector<ushort2> > grid(gridWidth * gridHeight);
|
||||
|
||||
minDist *= minDist;
|
||||
|
||||
for (int i = 0; i < centersCount; ++i)
|
||||
{
|
||||
ushort2 p = oldBuf[i];
|
||||
|
||||
bool good = true;
|
||||
|
||||
int xCell = static_cast<int>(p.x / cellSize);
|
||||
int yCell = static_cast<int>(p.y / cellSize);
|
||||
|
||||
int x1 = xCell - 1;
|
||||
int y1 = yCell - 1;
|
||||
int x2 = xCell + 1;
|
||||
int y2 = yCell + 1;
|
||||
|
||||
// boundary check
|
||||
x1 = std::max(0, x1);
|
||||
y1 = std::max(0, y1);
|
||||
x2 = std::min(gridWidth - 1, x2);
|
||||
y2 = std::min(gridHeight - 1, y2);
|
||||
|
||||
for (int yy = y1; yy <= y2; ++yy)
|
||||
{
|
||||
for (int xx = x1; xx <= x2; ++xx)
|
||||
{
|
||||
vector<ushort2>& m = grid[yy * gridWidth + xx];
|
||||
|
||||
for(size_t j = 0; j < m.size(); ++j)
|
||||
{
|
||||
float dx = p.x - m[j].x;
|
||||
float dy = p.y - m[j].y;
|
||||
|
||||
if (dx * dx + dy * dy < minDist)
|
||||
{
|
||||
good = false;
|
||||
goto break_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
break_out:
|
||||
|
||||
if(good)
|
||||
{
|
||||
grid[yCell * gridWidth + xCell].push_back(p);
|
||||
|
||||
newBuf[newCount++] = p;
|
||||
}
|
||||
}
|
||||
|
||||
cudaSafeCall( cudaMemcpy(centers, newBuf, newCount * sizeof(unsigned int), cudaMemcpyHostToDevice) );
|
||||
centersCount = newCount;
|
||||
}
|
||||
|
||||
ensureSizeIsEnough(1, maxCircles, CV_32FC3, circles);
|
||||
|
||||
DeviceInfo devInfo;
|
||||
const int circlesCount = circlesAccumRadius_gpu(centers, centersCount, srcPoints, pointsCount, circles.ptr<float3>(), maxCircles,
|
||||
dp, minRadius, maxRadius, votesThreshold, devInfo.supports(FEATURE_SET_COMPUTE_20));
|
||||
|
||||
if (circlesCount > 0)
|
||||
circles.cols = circlesCount;
|
||||
else
|
||||
circles.release();
|
||||
}
|
||||
|
||||
void cv::gpu::HoughCirclesDownload(const GpuMat& d_circles, cv::OutputArray h_circles_)
|
||||
{
|
||||
if (d_circles.empty())
|
||||
{
|
||||
h_circles_.release();
|
||||
return;
|
||||
}
|
||||
|
||||
CV_Assert(d_circles.rows == 1 && d_circles.type() == CV_32FC3);
|
||||
|
||||
h_circles_.create(1, d_circles.cols, CV_32FC3);
|
||||
Mat h_circles = h_circles_.getMat();
|
||||
d_circles.download(h_circles);
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
||||
|
Reference in New Issue
Block a user