made everything compile and even run somehow
This commit is contained in:
@@ -4,29 +4,29 @@
|
||||
#include <opencv2/ml/ml.hpp>
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
|
||||
int main()
|
||||
int main(int, char**)
|
||||
{
|
||||
// Data for visual representation
|
||||
int width = 512, height = 512;
|
||||
Mat image = Mat::zeros(height, width, CV_8UC3);
|
||||
|
||||
// Set up training data
|
||||
float labels[4] = {1.0, -1.0, -1.0, -1.0};
|
||||
Mat labelsMat(4, 1, CV_32FC1, labels);
|
||||
int labels[4] = {1, -1, -1, -1};
|
||||
Mat labelsMat(4, 1, CV_32SC1, labels);
|
||||
|
||||
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
|
||||
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
|
||||
|
||||
// Set up SVM's parameters
|
||||
CvSVMParams params;
|
||||
params.svm_type = CvSVM::C_SVC;
|
||||
params.kernel_type = CvSVM::LINEAR;
|
||||
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);
|
||||
SVM::Params params;
|
||||
params.svmType = SVM::C_SVC;
|
||||
params.kernelType = SVM::LINEAR;
|
||||
params.termCrit = TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6);
|
||||
|
||||
// Train the SVM
|
||||
CvSVM SVM;
|
||||
SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params);
|
||||
Ptr<SVM> svm = StatModel::train<SVM>(trainingDataMat, ROW_SAMPLE, labelsMat, params);
|
||||
|
||||
Vec3b green(0,255,0), blue (255,0,0);
|
||||
// Show the decision regions given by the SVM
|
||||
@@ -34,30 +34,30 @@ int main()
|
||||
for (int j = 0; j < image.cols; ++j)
|
||||
{
|
||||
Mat sampleMat = (Mat_<float>(1,2) << j,i);
|
||||
float response = SVM.predict(sampleMat);
|
||||
float response = svm->predict(sampleMat);
|
||||
|
||||
if (response == 1)
|
||||
image.at<Vec3b>(i,j) = green;
|
||||
else if (response == -1)
|
||||
image.at<Vec3b>(i,j) = blue;
|
||||
image.at<Vec3b>(i,j) = blue;
|
||||
}
|
||||
|
||||
// Show the training data
|
||||
int thickness = -1;
|
||||
int lineType = 8;
|
||||
circle( image, Point(501, 10), 5, Scalar( 0, 0, 0), thickness, lineType);
|
||||
circle( image, Point(255, 10), 5, Scalar(255, 255, 255), thickness, lineType);
|
||||
circle( image, Point(501, 255), 5, Scalar(255, 255, 255), thickness, lineType);
|
||||
circle( image, Point( 10, 501), 5, Scalar(255, 255, 255), thickness, lineType);
|
||||
circle( image, Point(501, 10), 5, Scalar( 0, 0, 0), thickness, lineType );
|
||||
circle( image, Point(255, 10), 5, Scalar(255, 255, 255), thickness, lineType );
|
||||
circle( image, Point(501, 255), 5, Scalar(255, 255, 255), thickness, lineType );
|
||||
circle( image, Point( 10, 501), 5, Scalar(255, 255, 255), thickness, lineType );
|
||||
|
||||
// Show support vectors
|
||||
thickness = 2;
|
||||
lineType = 8;
|
||||
int c = SVM.get_support_vector_count();
|
||||
Mat sv = svm->getSupportVectors();
|
||||
|
||||
for (int i = 0; i < c; ++i)
|
||||
for (int i = 0; i < sv.rows; ++i)
|
||||
{
|
||||
const float* v = SVM.get_support_vector(i);
|
||||
const float* v = sv.ptr<float>(i);
|
||||
circle( image, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness, lineType);
|
||||
}
|
||||
|
||||
|
@@ -8,6 +8,7 @@
|
||||
#define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
using namespace std;
|
||||
|
||||
static void help()
|
||||
@@ -30,7 +31,7 @@ int main()
|
||||
|
||||
//--------------------- 1. Set up training data randomly ---------------------------------------
|
||||
Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1);
|
||||
Mat labels (2*NTRAINING_SAMPLES, 1, CV_32FC1);
|
||||
Mat labels (2*NTRAINING_SAMPLES, 1, CV_32SC1);
|
||||
|
||||
RNG rng(100); // Random value generation class
|
||||
|
||||
@@ -71,16 +72,15 @@ int main()
|
||||
labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2
|
||||
|
||||
//------------------------ 2. Set up the support vector machines parameters --------------------
|
||||
CvSVMParams params;
|
||||
params.svm_type = SVM::C_SVC;
|
||||
SVM::Params params;
|
||||
params.svmType = SVM::C_SVC;
|
||||
params.C = 0.1;
|
||||
params.kernel_type = SVM::LINEAR;
|
||||
params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6);
|
||||
params.kernelType = SVM::LINEAR;
|
||||
params.termCrit = TermCriteria(TermCriteria::MAX_ITER, (int)1e7, 1e-6);
|
||||
|
||||
//------------------------ 3. Train the svm ----------------------------------------------------
|
||||
cout << "Starting training process" << endl;
|
||||
CvSVM svm;
|
||||
svm.train(trainData, labels, Mat(), Mat(), params);
|
||||
Ptr<SVM> svm = StatModel::train<SVM>(trainData, ROW_SAMPLE, labels, params);
|
||||
cout << "Finished training process" << endl;
|
||||
|
||||
//------------------------ 4. Show the decision regions ----------------------------------------
|
||||
@@ -89,7 +89,7 @@ int main()
|
||||
for (int j = 0; j < I.cols; ++j)
|
||||
{
|
||||
Mat sampleMat = (Mat_<float>(1,2) << i, j);
|
||||
float response = svm.predict(sampleMat);
|
||||
float response = svm->predict(sampleMat);
|
||||
|
||||
if (response == 1) I.at<Vec3b>(j, i) = green;
|
||||
else if (response == 2) I.at<Vec3b>(j, i) = blue;
|
||||
@@ -117,11 +117,11 @@ int main()
|
||||
//------------------------- 6. Show support vectors --------------------------------------------
|
||||
thick = 2;
|
||||
lineType = 8;
|
||||
int x = svm.get_support_vector_count();
|
||||
Mat sv = svm->getSupportVectors();
|
||||
|
||||
for (int i = 0; i < x; ++i)
|
||||
for (int i = 0; i < sv.rows; ++i)
|
||||
{
|
||||
const float* v = svm.get_support_vector(i);
|
||||
const float* v = sv.ptr<float>(i);
|
||||
circle( I, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thick, lineType);
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user