added support of 4 channels images to StereoBeliefPropagation, minor code refactoring.

This commit is contained in:
Vladislav Vinogradov
2010-12-07 10:20:03 +00:00
parent 5e401f2998
commit c18aa438ec
4 changed files with 186 additions and 244 deletions

View File

@@ -48,13 +48,8 @@
using namespace cv::gpu;
using namespace cv::gpu::device;
#undef FLT_MAX
//#ifndef FLT_MAX
//#define FLT_MAX 3.402823466e+38F
//#endif
namespace cv { namespace gpu { namespace bp {
namespace cv { namespace gpu { namespace bp
{
///////////////////////////////////////////////////////////////
/////////////////////// load constants ////////////////////////
///////////////////////////////////////////////////////////////
@@ -78,144 +73,115 @@ namespace cv { namespace gpu { namespace bp {
////////////////////////// comp data //////////////////////////
///////////////////////////////////////////////////////////////
template <typename T>
__global__ void comp_data_gray(const uchar* l, const uchar* r, size_t step, T* data, size_t data_step, int cols, int rows)
__device__ float pixDiff(uchar l, uchar r)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
return abs((int)l - r);
}
__device__ float pixDiff(const uchar3& l, const uchar3& r)
{
const float tr = 0.299f;
const float tg = 0.587f;
const float tb = 0.114f;
if (y > 0 && y < rows - 1 && x > 0 && x < cols - 1)
float val = tb * abs((int)l.x - r.x);
val += tg * abs((int)l.y - r.y);
val += tr * abs((int)l.z - r.z);
return val;
}
__device__ float pixDiff(const uchar4& l, const uchar4& r)
{
const float tr = 0.299f;
const float tg = 0.587f;
const float tb = 0.114f;
float val = tb * abs((int)l.x - r.x);
val += tg * abs((int)l.y - r.y);
val += tr * abs((int)l.z - r.z);
return val;
}
template <typename T, typename D>
__global__ void comp_data(const DevMem2D_<T> left, const PtrStep_<T> right, PtrElemStep_<D> data)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y > 0 && y < left.rows - 1 && x > 0 && x < left.cols - 1)
{
const uchar* ls = l + y * step + x;
const uchar* rs = r + y * step + x;
const T l = left.ptr(y)[x];
const T* rs = right.ptr(y) + x;
T* ds = data + y * data_step + x;
size_t disp_step = data_step * rows;
D* ds = data.ptr(y) + x;
const size_t disp_step = data.step * left.rows;
for (int disp = 0; disp < cndisp; disp++)
{
if (x - disp >= 1)
{
float val = abs((int)ls[0] - rs[-disp]);
float val = pixDiff(l, rs[-disp]);
ds[disp * disp_step] = saturate_cast<T>(fmin(cdata_weight * val, cdata_weight * cmax_data_term));
ds[disp * disp_step] = saturate_cast<D>(fmin(cdata_weight * val, cdata_weight * cmax_data_term));
}
else
{
ds[disp * disp_step] = saturate_cast<T>(cdata_weight * cmax_data_term);
ds[disp * disp_step] = saturate_cast<D>(cdata_weight * cmax_data_term);
}
}
}
}
template <typename T>
__global__ void comp_data_bgr(const uchar* l, const uchar* r, size_t step, T* data, size_t data_step, int cols, int rows)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y > 0 && y < rows - 1 && x > 0 && x < cols - 1)
{
const uchar* ls = l + y * step + x * 3;
const uchar* rs = r + y * step + x * 3;
T* ds = data + y * data_step + x;
size_t disp_step = data_step * rows;
for (int disp = 0; disp < cndisp; disp++)
{
if (x - disp >= 1)
{
const float tr = 0.299f;
const float tg = 0.587f;
const float tb = 0.114f;
float val = tb * abs((int)ls[0] - rs[0-disp*3]);
val += tg * abs((int)ls[1] - rs[1-disp*3]);
val += tr * abs((int)ls[2] - rs[2-disp*3]);
ds[disp * disp_step] = saturate_cast<T>(fmin(cdata_weight * val, cdata_weight * cmax_data_term));
}
else
{
ds[disp * disp_step] = saturate_cast<T>(cdata_weight * cmax_data_term);
}
}
}
}
typedef void (*CompDataFunc)(const DevMem2D& l, const DevMem2D& r, int channels, DevMem2D mdata, const cudaStream_t& stream);
template<typename T>
void comp_data_(const DevMem2D& l, const DevMem2D& r, int channels, DevMem2D mdata, const cudaStream_t& stream)
template<typename T, typename D>
void comp_data_gpu(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(l.cols, threads.x);
grid.y = divUp(l.rows, threads.y);
grid.x = divUp(left.cols, threads.x);
grid.y = divUp(left.rows, threads.y);
if (channels == 1)
comp_data_gray<T><<<grid, threads, 0, stream>>>(l.data, r.data, l.step, (T*)mdata.data, mdata.step/sizeof(T), l.cols, l.rows);
else
comp_data_bgr<T><<<grid, threads, 0, stream>>>(l.data, r.data, l.step, (T*)mdata.data, mdata.step/sizeof(T), l.cols, l.rows);
comp_data<T, D><<<grid, threads, 0, stream>>>((DevMem2D_<T>)left, (DevMem2D_<T>)right, (DevMem2D_<D>)data);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
void comp_data(int msg_type, const DevMem2D& l, const DevMem2D& r, int channels, DevMem2D mdata, const cudaStream_t& stream)
{
static CompDataFunc tab[8] =
{
0, // uchar
0, // schar
0, // ushort
comp_data_<short>, // short
0, // int
comp_data_<float>, // float
0, // double
0 // user type
};
CompDataFunc func = tab[msg_type];
if (func == 0)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
func(l, r, channels, mdata, stream);
}
template void comp_data_gpu<uchar, short>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream);
template void comp_data_gpu<uchar, float>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream);
template void comp_data_gpu<uchar3, short>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream);
template void comp_data_gpu<uchar3, float>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream);
template void comp_data_gpu<uchar4, short>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream);
template void comp_data_gpu<uchar4, float>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream);
///////////////////////////////////////////////////////////////
//////////////////////// data step down ///////////////////////
///////////////////////////////////////////////////////////////
template <typename T>
__global__ void data_step_down(int dst_cols, int dst_rows, int src_rows, const T* src, size_t src_step, T* dst, size_t dst_step)
__global__ void data_step_down(int dst_cols, int dst_rows, int src_rows, const PtrStep_<T> src, PtrStep_<T> dst)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < dst_cols && y < dst_rows)
{
const size_t dst_disp_step = dst_step * dst_rows;
const size_t src_disp_step = src_step * src_rows;
for (int d = 0; d < cndisp; ++d)
{
float dst_reg = src[d * src_disp_step + src_step * (2*y+0) + (2*x+0)];
dst_reg += src[d * src_disp_step + src_step * (2*y+1) + (2*x+0)];
dst_reg += src[d * src_disp_step + src_step * (2*y+0) + (2*x+1)];
dst_reg += src[d * src_disp_step + src_step * (2*y+1) + (2*x+1)];
float dst_reg = src.ptr(d * src_rows + (2*y+0))[(2*x+0)];
dst_reg += src.ptr(d * src_rows + (2*y+1))[(2*x+0)];
dst_reg += src.ptr(d * src_rows + (2*y+0))[(2*x+1)];
dst_reg += src.ptr(d * src_rows + (2*y+1))[(2*x+1)];
dst[d * dst_disp_step + y * dst_step + x] = saturate_cast<T>(dst_reg);
dst.ptr(d * dst_rows + y)[x] = saturate_cast<T>(dst_reg);
}
}
}
typedef void (*DataStepDownFunc)(int dst_cols, int dst_rows, int src_rows, const DevMem2D& src, DevMem2D dst, const cudaStream_t& stream);
template<typename T>
void data_step_down_(int dst_cols, int dst_rows, int src_rows, const DevMem2D& src, DevMem2D dst, const cudaStream_t& stream)
void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const DevMem2D& src, const DevMem2D& dst, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
@@ -223,59 +189,40 @@ namespace cv { namespace gpu { namespace bp {
grid.x = divUp(dst_cols, threads.x);
grid.y = divUp(dst_rows, threads.y);
data_step_down<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)src.data, src.step/sizeof(T), (T*)dst.data, dst.step/sizeof(T));
data_step_down<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)src, (DevMem2D_<T>)dst);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
void data_step_down(int dst_cols, int dst_rows, int src_rows, int msg_type, const DevMem2D& src, DevMem2D dst, const cudaStream_t& stream)
{
static DataStepDownFunc tab[8] =
{
0, // uchar
0, // schar
0, // ushort
data_step_down_<short>, // short
0, // int
data_step_down_<float>, // float
0, // double
0 // user type
};
DataStepDownFunc func = tab[msg_type];
if (func == 0)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
func(dst_cols, dst_rows, src_rows, src, dst, stream);
}
template void data_step_down_gpu<short>(int dst_cols, int dst_rows, int src_rows, const DevMem2D& src, const DevMem2D& dst, cudaStream_t stream);
template void data_step_down_gpu<float>(int dst_cols, int dst_rows, int src_rows, const DevMem2D& src, const DevMem2D& dst, cudaStream_t stream);
///////////////////////////////////////////////////////////////
/////////////////// level up messages ////////////////////////
///////////////////////////////////////////////////////////////
template <typename T>
__global__ void level_up_message(int dst_cols, int dst_rows, int src_rows, const T* src, size_t src_step, T* dst, size_t dst_step)
__global__ void level_up_message(int dst_cols, int dst_rows, int src_rows, const PtrElemStep_<T> src, PtrElemStep_<T> dst)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < dst_cols && y < dst_rows)
{
const size_t dst_disp_step = dst_step * dst_rows;
const size_t src_disp_step = src_step * src_rows;
const size_t dst_disp_step = dst.step * dst_rows;
const size_t src_disp_step = src.step * src_rows;
T* dstr = dst + y * dst_step + x;
const T* srcr = src + y/2 * src_step + x/2;
T* dstr = dst.ptr(y ) + x;
const T* srcr = src.ptr(y/2) + x/2;
for (int d = 0; d < cndisp; ++d)
dstr[d * dst_disp_step] = srcr[d * src_disp_step];
}
}
typedef void (*LevelUpMessagesFunc)(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2D* mus, DevMem2D* mds, DevMem2D* mls, DevMem2D* mrs, const cudaStream_t& stream);
template<typename T>
void level_up_messages_(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2D* mus, DevMem2D* mds, DevMem2D* mls, DevMem2D* mrs, const cudaStream_t& stream)
template <typename T>
void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2D* mus, DevMem2D* mds, DevMem2D* mls, DevMem2D* mrs, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
@@ -285,34 +232,17 @@ namespace cv { namespace gpu { namespace bp {
int src_idx = (dst_idx + 1) & 1;
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)mus[src_idx].data, mus[src_idx].step/sizeof(T), (T*)mus[dst_idx].data, mus[dst_idx].step/sizeof(T));
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)mds[src_idx].data, mds[src_idx].step/sizeof(T), (T*)mds[dst_idx].data, mds[dst_idx].step/sizeof(T));
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)mls[src_idx].data, mls[src_idx].step/sizeof(T), (T*)mls[dst_idx].data, mls[dst_idx].step/sizeof(T));
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (const T*)mrs[src_idx].data, mrs[src_idx].step/sizeof(T), (T*)mrs[dst_idx].data, mrs[dst_idx].step/sizeof(T));
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mus[src_idx], (DevMem2D_<T>)mus[dst_idx]);
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mds[src_idx], (DevMem2D_<T>)mds[dst_idx]);
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mls[src_idx], (DevMem2D_<T>)mls[dst_idx]);
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mrs[src_idx], (DevMem2D_<T>)mrs[dst_idx]);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
void level_up_messages(int dst_idx, int dst_cols, int dst_rows, int src_rows, int msg_type, DevMem2D* mus, DevMem2D* mds, DevMem2D* mls, DevMem2D* mrs, const cudaStream_t& stream)
{
static LevelUpMessagesFunc tab[8] =
{
0, // uchar
0, // schar
0, // ushort
level_up_messages_<short>, // short
0, // int
level_up_messages_<float>, // float
0, // double
0 // user type
};
LevelUpMessagesFunc func = tab[msg_type];
if (func == 0)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
func(dst_idx, dst_cols, dst_rows, src_rows, mus, mds, mls, mrs, stream);
}
template void level_up_messages_gpu<short>(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2D* mus, DevMem2D* mds, DevMem2D* mls, DevMem2D* mrs, cudaStream_t stream);
template void level_up_messages_gpu<float>(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2D* mus, DevMem2D* mds, DevMem2D* mls, DevMem2D* mrs, cudaStream_t stream);
///////////////////////////////////////////////////////////////
//////////////////// calc all iterations /////////////////////
@@ -389,33 +319,32 @@ namespace cv { namespace gpu { namespace bp {
}
template <typename T>
__global__ void one_iteration(int t, T* u, T* d, T* l, T* r, size_t msg_step, const T* data, size_t data_step, int cols, int rows)
__global__ void one_iteration(int t, PtrElemStep_<T> u, T* d, T* l, T* r, const PtrElemStep_<T> data, int cols, int rows)
{
int y = blockIdx.y * blockDim.y + threadIdx.y;
int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + t) & 1);
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + t) & 1);
if ( (y > 0) && (y < rows - 1) && (x > 0) && (x < cols - 1))
if ((y > 0) && (y < rows - 1) && (x > 0) && (x < cols - 1))
{
T* us = u + y * msg_step + x;
T* ds = d + y * msg_step + x;
T* ls = l + y * msg_step + x;
T* rs = r + y * msg_step + x;
const T* dt = data + y * data_step + x;
T* us = u.ptr(y) + x;
T* ds = d + y * u.step + x;
T* ls = l + y * u.step + x;
T* rs = r + y * u.step + x;
const T* dt = data.ptr(y) + x;
size_t msg_disp_step = msg_step * rows;
size_t data_disp_step = data_step * rows;
size_t msg_disp_step = u.step * rows;
size_t data_disp_step = data.step * rows;
message(us + msg_step, ls + 1, rs - 1, dt, us, msg_disp_step, data_disp_step);
message(ds - msg_step, ls + 1, rs - 1, dt, ds, msg_disp_step, data_disp_step);
message(us + msg_step, ds - msg_step, rs - 1, dt, rs, msg_disp_step, data_disp_step);
message(us + msg_step, ds - msg_step, ls + 1, dt, ls, msg_disp_step, data_disp_step);
message(us + u.step, ls + 1, rs - 1, dt, us, msg_disp_step, data_disp_step);
message(ds - u.step, ls + 1, rs - 1, dt, ds, msg_disp_step, data_disp_step);
message(us + u.step, ds - u.step, rs - 1, dt, rs, msg_disp_step, data_disp_step);
message(us + u.step, ds - u.step, ls + 1, dt, ls, msg_disp_step, data_disp_step);
}
}
typedef void (*CalcAllIterationFunc)(int cols, int rows, int iters, DevMem2D& u, DevMem2D& d, DevMem2D& l, DevMem2D& r, const DevMem2D& data, const cudaStream_t& stream);
template<typename T>
void calc_all_iterations_(int cols, int rows, int iters, DevMem2D& u, DevMem2D& d, DevMem2D& l, DevMem2D& r, const DevMem2D& data, const cudaStream_t& stream)
template <typename T>
void calc_all_iterations_gpu(int cols, int rows, int iters, const DevMem2D& u, const DevMem2D& d,
const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
@@ -425,52 +354,36 @@ namespace cv { namespace gpu { namespace bp {
for(int t = 0; t < iters; ++t)
{
one_iteration<T><<<grid, threads, 0, stream>>>(t, (T*)u.data, (T*)d.data, (T*)l.data, (T*)r.data, u.step/sizeof(T), (const T*)data.data, data.step/sizeof(T), cols, rows);
one_iteration<T><<<grid, threads, 0, stream>>>(t, (DevMem2D_<T>)u, (T*)d.data, (T*)l.data, (T*)r.data, (DevMem2D_<T>)data, cols, rows);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
}
void calc_all_iterations(int cols, int rows, int iters, int msg_type, DevMem2D& u, DevMem2D& d, DevMem2D& l, DevMem2D& r, const DevMem2D& data, const cudaStream_t& stream)
{
static CalcAllIterationFunc tab[8] =
{
0, // uchar
0, // schar
0, // ushort
calc_all_iterations_<short>, // short
0, // int
calc_all_iterations_<float>, // float
0, // double
0 // user type
};
CalcAllIterationFunc func = tab[msg_type];
if (func == 0)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
func(cols, rows, iters, u, d, l, r, data, stream);
}
template void calc_all_iterations_gpu<short>(int cols, int rows, int iters, const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, cudaStream_t stream);
template void calc_all_iterations_gpu<float>(int cols, int rows, int iters, const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, cudaStream_t stream);
///////////////////////////////////////////////////////////////
/////////////////////////// output ////////////////////////////
///////////////////////////////////////////////////////////////
template <typename T>
__global__ void output(int cols, int rows, const T* u, const T* d, const T* l, const T* r, const T* data, size_t step, short* disp, size_t res_step)
__global__ void output(const PtrElemStep_<T> u, const T* d, const T* l, const T* r, const T* data,
DevMem2D_<short> disp)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y > 0 && y < rows - 1 && x > 0 && x < cols - 1)
if (y > 0 && y < disp.rows - 1 && x > 0 && x < disp.cols - 1)
{
const T* us = u + (y + 1) * step + x;
const T* ds = d + (y - 1) * step + x;
const T* ls = l + y * step + (x + 1);
const T* rs = r + y * step + (x - 1);
const T* dt = data + y * step + x;
const T* us = u.ptr(y + 1) + x;
const T* ds = d + (y - 1) * u.step + x;
const T* ls = l + y * u.step + (x + 1);
const T* rs = r + y * u.step + (x - 1);
const T* dt = data + y * u.step + x;
size_t disp_step = rows * step;
size_t disp_step = disp.rows * u.step;
int best = 0;
float best_val = numeric_limits_gpu<float>::max();
@@ -489,14 +402,13 @@ namespace cv { namespace gpu { namespace bp {
}
}
disp[res_step * y + x] = saturate_cast<short>(best);
disp.ptr(y)[x] = saturate_cast<short>(best);
}
}
typedef void (*OutputFunc)(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, DevMem2D disp, const cudaStream_t& stream);
template<typename T>
void output_(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, DevMem2D disp, const cudaStream_t& stream)
template <typename T>
void output_gpu(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data,
const DevMem2D_<short>& disp, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
@@ -504,30 +416,12 @@ namespace cv { namespace gpu { namespace bp {
grid.x = divUp(disp.cols, threads.x);
grid.y = divUp(disp.rows, threads.y);
output<T><<<grid, threads, 0, stream>>>(disp.cols, disp.rows, (const T*)u.data, (const T*)d.data, (const T*)l.data, (const T*)r.data, (const T*)data.data, u.step/sizeof(T), (short*)disp.data, disp.step/sizeof(short));
output<T><<<grid, threads, 0, stream>>>((DevMem2D_<T>)u, (const T*)d.data, (const T*)l.data, (const T*)r.data, (const T*)data.data, disp);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
void output(int msg_type, const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, DevMem2D disp, const cudaStream_t& stream)
{
static OutputFunc tab[8] =
{
0, // uchar
0, // schar
0, // ushort
output_<short>, // short
0, // int
output_<float>, // float
0, // double
0 // user type
};
OutputFunc func = tab[msg_type];
if (func == 0)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
func(u, d, l, r, data, disp, stream);
}
template void output_gpu<short>(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, const DevMem2D_<short>& disp, cudaStream_t stream);
template void output_gpu<float>(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, const DevMem2D_<short>& disp, cudaStream_t stream);
}}}