facerec_demo.py: Shortened code. Final version.
This commit is contained in:
parent
4a7e29b3f4
commit
c0a4105467
@ -133,24 +133,24 @@ if __name__ == "__main__":
|
||||
eigenvectors = model.getMat("eigenvectors")
|
||||
cv2.imwrite("test.png", X[0])
|
||||
# We'll save the mean, by first normalizing it:
|
||||
mean_norm = normalize(mean, 0, 255)
|
||||
mean_norm = normalize(mean, 0, 255, dtype=np.uint8)
|
||||
mean_resized = mean_norm.reshape(X[0].shape)
|
||||
if out_dir is None:
|
||||
cv2.imshow("mean", np.asarray(mean_resized, dtype=np.uint8))
|
||||
cv2.imshow("mean", mean_resized)
|
||||
else:
|
||||
cv2.imwrite("%s/mean.png" % (out_dir), np.asarray(mean_resized, dtype=np.uint8))
|
||||
cv2.imwrite("%s/mean.png" % (out_dir), mean_resized)
|
||||
# Turn the first (at most) 16 eigenvectors into grayscale
|
||||
# images. You could also use cv::normalize here, but sticking
|
||||
# to NumPy is much easier for now.
|
||||
# Note: eigenvectors are stored by column:
|
||||
for i in xrange(min(len(X), 16)):
|
||||
eigenvector_i = eigenvectors[:,i].reshape(X[0].shape)
|
||||
eigenvector_i_norm = normalize(eigenvector_i, 0, 255)
|
||||
eigenvector_i_norm = normalize(eigenvector_i, 0, 255, dtype=np.uint8)
|
||||
# Show or save the images:
|
||||
if out_dir is None:
|
||||
cv2.imshow("%s/eigenvector_%d" % (out_dir,i), np.asarray(eigenvector_i_norm, dtype=np.uint8))
|
||||
cv2.imshow("%s/eigenface_%d" % (out_dir,i), eigenvector_i_norm)
|
||||
else:
|
||||
cv2.imwrite("%s/eigenvector_%d.png" % (out_dir,i), np.asarray(eigenvector_i_norm, dtype=np.uint8))
|
||||
cv2.imwrite("%s/eigenface_%d.png" % (out_dir,i), eigenvector_i_norm)
|
||||
# Show the images:
|
||||
if out_dir is None:
|
||||
cv2.waitKey(0)
|
||||
|
Loading…
Reference in New Issue
Block a user