Added margin type, added tests with different scales of features.

Also fixed documentation, refactored sample.
This commit is contained in:
Marina Noskova
2016-02-09 18:42:23 +03:00
parent acd74037b3
commit bfdca05f25
6 changed files with 429 additions and 221 deletions

View File

@@ -52,45 +52,99 @@ using cv::ml::TrainData;
class CV_SVMSGDTrainTest : public cvtest::BaseTest
{
public:
CV_SVMSGDTrainTest(Mat _weights, float shift);
enum TrainDataType
{
UNIFORM_SAME_SCALE,
UNIFORM_DIFFERENT_SCALES
};
CV_SVMSGDTrainTest(Mat _weights, float shift, TrainDataType type, double precision = 0.01);
private:
virtual void run( int start_from );
float decisionFunction(Mat sample, Mat weights, float shift);
static float decisionFunction(const Mat &sample, const Mat &weights, float shift);
void makeTrainData(Mat weights, float shift);
void makeTestData(Mat weights, float shift);
void generateSameScaleData(Mat &samples);
void generateDifferentScalesData(Mat &samples, float shift);
TrainDataType type;
double precision;
cv::Ptr<TrainData> data;
cv::Mat testSamples;
cv::Mat testResponses;
static const int TEST_VALUE_LIMIT = 500;
};
CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(Mat weights, float shift)
void CV_SVMSGDTrainTest::generateSameScaleData(Mat &samples)
{
float lowerLimit = -TEST_VALUE_LIMIT;
float upperLimit = TEST_VALUE_LIMIT;
cv::RNG rng(0);
rng.fill(samples, RNG::UNIFORM, lowerLimit, upperLimit);
}
void CV_SVMSGDTrainTest::generateDifferentScalesData(Mat &samples, float shift)
{
int featureCount = samples.cols;
float lowerLimit = -TEST_VALUE_LIMIT;
float upperLimit = TEST_VALUE_LIMIT;
cv::RNG rng(10);
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
{
int crit = rng.uniform(0, 2);
if (crit > 0)
{
rng.fill(samples.col(featureIndex), RNG::UNIFORM, lowerLimit - shift, upperLimit - shift);
}
else
{
rng.fill(samples.col(featureIndex), RNG::UNIFORM, lowerLimit/10, upperLimit/10);
}
}
}
void CV_SVMSGDTrainTest::makeTrainData(Mat weights, float shift)
{
int datasize = 100000;
int varCount = weights.cols;
cv::Mat samples = cv::Mat::zeros( datasize, varCount, CV_32FC1 );
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32FC1 );
cv::RNG rng(0);
int featureCount = weights.cols;
cv::Mat samples = cv::Mat::zeros(datasize, featureCount, CV_32FC1);
cv::Mat responses = cv::Mat::zeros(datasize, 1, CV_32FC1);
switch(type)
{
case UNIFORM_SAME_SCALE:
generateSameScaleData(samples);
break;
case UNIFORM_DIFFERENT_SCALES:
generateDifferentScalesData(samples, shift);
break;
default:
CV_Error(CV_StsBadArg, "Unknown train data type");
}
for (int sampleIndex = 0; sampleIndex < datasize; sampleIndex++)
{
responses.at<float>(sampleIndex) = decisionFunction(samples.row(sampleIndex), weights, shift) > 0 ? 1 : -1;
}
data = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses);
}
void CV_SVMSGDTrainTest::makeTestData(Mat weights, float shift)
{
int testSamplesCount = 100000;
int featureCount = weights.cols;
float lowerLimit = -TEST_VALUE_LIMIT;
float upperLimit = TEST_VALUE_LIMIT;
cv::RNG rng(0);
rng.fill(samples, RNG::UNIFORM, lowerLimit, upperLimit);
for (int sampleIndex = 0; sampleIndex < datasize; sampleIndex++)
{
responses.at<float>( sampleIndex ) = decisionFunction(samples.row(sampleIndex), weights, shift) > 0 ? 1 : -1;
}
std::cout << "real weights\n" << weights/norm(weights) << "\n" << std::endl;
std::cout << "real shift \n" << shift/norm(weights) << "\n" << std::endl;
data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
int testSamplesCount = 100000;
testSamples.create(testSamplesCount, varCount, CV_32FC1);
testSamples.create(testSamplesCount, featureCount, CV_32FC1);
rng.fill(testSamples, RNG::UNIFORM, lowerLimit, upperLimit);
testResponses.create(testSamplesCount, 1, CV_32FC1);
@@ -100,12 +154,24 @@ CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(Mat weights, float shift)
}
}
CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(Mat weights, float shift, TrainDataType _type, double _precision)
{
type = _type;
precision = _precision;
makeTrainData(weights, shift);
makeTestData(weights, shift);
}
float CV_SVMSGDTrainTest::decisionFunction(const Mat &sample, const Mat &weights, float shift)
{
return sample.dot(weights) + shift;
}
void CV_SVMSGDTrainTest::run( int /*start_from*/ )
{
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
svmsgd->setOptimalParameters(SVMSGD::ASGD);
svmsgd->setTermCriteria(TermCriteria(TermCriteria::EPS, 0, 0.00005));
svmsgd->setOptimalParameters();
svmsgd->train(data);
@@ -118,77 +184,106 @@ void CV_SVMSGDTrainTest::run( int /*start_from*/ )
for (int i = 0; i < testSamplesCount; i++)
{
if (responses.at<float>(i) * testResponses.at<float>(i) < 0 )
if (responses.at<float>(i) * testResponses.at<float>(i) < 0)
errCount++;
}
float normW = norm(svmsgd->getWeights());
std::cout << "found weights\n" << svmsgd->getWeights()/normW << "\n" << std::endl;
std::cout << "found shift \n" << svmsgd->getShift()/normW << "\n" << std::endl;
float err = (float)errCount / testSamplesCount;
std::cout << "err " << err << std::endl;
if ( err > 0.01 )
if ( err > precision )
{
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
}
}
float CV_SVMSGDTrainTest::decisionFunction(Mat sample, Mat weights, float shift)
void makeWeightsAndShift(int featureCount, Mat &weights, float &shift)
{
return sample.dot(weights) + shift;
}
TEST(ML_SVMSGD, train0)
{
int varCount = 2;
Mat weights;
weights.create(1, varCount, CV_32FC1);
weights.at<float>(0) = 1;
weights.at<float>(1) = 0;
cv::RNG rng(1);
float shift = rng.uniform(-varCount, varCount);
CV_SVMSGDTrainTest test(weights, shift);
test.safe_run();
}
TEST(ML_SVMSGD, train1)
{
int varCount = 5;
Mat weights;
weights.create(1, varCount, CV_32FC1);
float lowerLimit = -1;
float upperLimit = 1;
weights.create(1, featureCount, CV_32FC1);
cv::RNG rng(0);
double lowerLimit = -1;
double upperLimit = 1;
rng.fill(weights, RNG::UNIFORM, lowerLimit, upperLimit);
float shift = rng.uniform(-varCount, varCount);
CV_SVMSGDTrainTest test(weights, shift);
test.safe_run();
shift = rng.uniform(-featureCount, featureCount);
}
TEST(ML_SVMSGD, train2)
TEST(ML_SVMSGD, trainSameScale2)
{
int varCount = 100;
int featureCount = 2;
Mat weights;
weights.create(1, varCount, CV_32FC1);
float lowerLimit = -1;
float upperLimit = 1;
cv::RNG rng(0);
rng.fill(weights, RNG::UNIFORM, lowerLimit, upperLimit);
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
float shift = rng.uniform(-varCount, varCount);
CV_SVMSGDTrainTest test(weights,shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE);
test.safe_run();
}
TEST(ML_SVMSGD, trainSameScale5)
{
int featureCount = 5;
Mat weights;
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE);
test.safe_run();
}
TEST(ML_SVMSGD, trainSameScale100)
{
int featureCount = 100;
Mat weights;
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE);
test.safe_run();
}
TEST(ML_SVMSGD, trainDifferentScales2)
{
int featureCount = 2;
Mat weights;
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01);
test.safe_run();
}
TEST(ML_SVMSGD, trainDifferentScales5)
{
int featureCount = 5;
Mat weights;
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.05);
test.safe_run();
}
TEST(ML_SVMSGD, trainDifferentScales100)
{
int featureCount = 100;
Mat weights;
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.10);
test.safe_run();
}