Added margin type, added tests with different scales of features.

Also fixed documentation, refactored sample.
This commit is contained in:
Marina Noskova
2016-02-09 18:42:23 +03:00
parent acd74037b3
commit bfdca05f25
6 changed files with 429 additions and 221 deletions

View File

@@ -42,7 +42,6 @@
#include "precomp.hpp"
#include "limits"
//#include "math.h"
#include <iostream>
@@ -76,9 +75,9 @@ public:
virtual void clear();
virtual void write(FileStorage& fs) const;
virtual void write(FileStorage &fs) const;
virtual void read(const FileNode& fn);
virtual void read(const FileNode &fn);
virtual Mat getWeights(){ return weights_; }
@@ -88,11 +87,15 @@ public:
virtual String getDefaultName() const {return "opencv_ml_svmsgd";}
virtual void setOptimalParameters(int type = ASGD);
virtual void setOptimalParameters(int svmsgdType = ASGD, int marginType = SOFT_MARGIN);
virtual int getType() const;
virtual int getSvmsgdType() const;
virtual void setType(int type);
virtual void setSvmsgdType(int svmsgdType);
virtual int getMarginType() const;
virtual void setMarginType(int marginType);
CV_IMPL_PROPERTY(float, Lambda, params.lambda)
CV_IMPL_PROPERTY(float, Gamma0, params.gamma0)
@@ -100,21 +103,21 @@ public:
CV_IMPL_PROPERTY_S(cv::TermCriteria, TermCriteria, params.termCrit)
private:
void updateWeights(InputArray sample, bool isFirstClass, float gamma, Mat weights);
void updateWeights(InputArray sample, bool isFirstClass, float gamma, Mat &weights);
std::pair<bool,bool> areClassesEmpty(Mat responses);
void writeParams( FileStorage& fs ) const;
void writeParams( FileStorage &fs ) const;
void readParams( const FileNode& fn );
void readParams( const FileNode &fn );
static inline bool isFirstClass(float val) { return val > 0; }
static void normalizeSamples(Mat &matrix, Mat &multiplier, Mat &average);
static void normalizeSamples(Mat &matrix, Mat &average, float &multiplier);
float calcShift(InputArray _samples, InputArray _responses) const;
static void makeExtendedTrainSamples(const Mat trainSamples, Mat &extendedTrainSamples, Mat &multiplier);
static void makeExtendedTrainSamples(const Mat &trainSamples, Mat &extendedTrainSamples, Mat &average, float &multiplier);
@@ -130,6 +133,7 @@ private:
float c;
TermCriteria termCrit;
SvmsgdType svmsgdType;
MarginType marginType;
};
SVMSGDParams params;
@@ -160,7 +164,7 @@ std::pair<bool,bool> SVMSGDImpl::areClassesEmpty(Mat responses)
return emptyInClasses;
}
void SVMSGDImpl::normalizeSamples(Mat &samples, Mat &multiplier, Mat &average)
void SVMSGDImpl::normalizeSamples(Mat &samples, Mat &average, float &multiplier)
{
int featuresCount = samples.cols;
int samplesCount = samples.rows;
@@ -176,37 +180,25 @@ void SVMSGDImpl::normalizeSamples(Mat &samples, Mat &multiplier, Mat &average)
samples.row(sampleIndex) -= average;
}
Mat featureNorm(1, featuresCount, samples.type());
for (int featureIndex = 0; featureIndex < featuresCount; featureIndex++)
{
featureNorm.at<float>(featureIndex) = norm(samples.col(featureIndex));
}
double normValue = norm(samples);
multiplier = sqrt(samplesCount) / featureNorm;
for (int sampleIndex = 0; sampleIndex < samplesCount; sampleIndex++)
{
samples.row(sampleIndex) = samples.row(sampleIndex).mul(multiplier);
}
multiplier = sqrt(samples.total()) / normValue;
samples *= multiplier;
}
void SVMSGDImpl::makeExtendedTrainSamples(const Mat trainSamples, Mat &extendedTrainSamples, Mat &multiplier)
void SVMSGDImpl::makeExtendedTrainSamples(const Mat &trainSamples, Mat &extendedTrainSamples, Mat &average, float &multiplier)
{
Mat normalisedTrainSamples = trainSamples.clone();
int samplesCount = normalisedTrainSamples.rows;
Mat average;
normalizeSamples(normalisedTrainSamples, multiplier, average);
normalizeSamples(normalisedTrainSamples, average, multiplier);
Mat onesCol = Mat::ones(samplesCount, 1, CV_32F);
cv::hconcat(normalisedTrainSamples, onesCol, extendedTrainSamples);
//cout << "SVMSGDImpl::makeExtendedTrainSamples average: \n" << average << endl;
//cout << "SVMSGDImpl::makeExtendedTrainSamples multiplier: \n" << multiplier << endl;
}
void SVMSGDImpl::updateWeights(InputArray _sample, bool firstClass, float gamma, Mat weights)
void SVMSGDImpl::updateWeights(InputArray _sample, bool firstClass, float gamma, Mat& weights)
{
Mat sample = _sample.getMat();
@@ -226,7 +218,7 @@ void SVMSGDImpl::updateWeights(InputArray _sample, bool firstClass, float gamma,
float SVMSGDImpl::calcShift(InputArray _samples, InputArray _responses) const
{
float distance_to_classes[2] = { std::numeric_limits<float>::max(), std::numeric_limits<float>::max() };
float distanceToClasses[2] = { std::numeric_limits<float>::max(), std::numeric_limits<float>::max() };
Mat trainSamples = _samples.getMat();
int trainSamplesCount = trainSamples.rows;
@@ -241,36 +233,29 @@ float SVMSGDImpl::calcShift(InputArray _samples, InputArray _responses) const
bool firstClass = isFirstClass(trainResponses.at<float>(samplesIndex));
int index = firstClass ? 0:1;
float signToMul = firstClass ? 1 : -1;
float cur_distance = dotProduct * signToMul;
float curDistance = dotProduct * signToMul;
if (cur_distance < distance_to_classes[index])
if (curDistance < distanceToClasses[index])
{
distance_to_classes[index] = cur_distance;
distanceToClasses[index] = curDistance;
}
}
return -(distance_to_classes[0] - distance_to_classes[1]) / 2.f;
return -(distanceToClasses[0] - distanceToClasses[1]) / 2.f;
}
bool SVMSGDImpl::train(const Ptr<TrainData>& data, int)
{
//cout << "SVMSGDImpl::train begin" << endl;
clear();
CV_Assert( isClassifier() ); //toDo: consider
Mat trainSamples = data->getTrainSamples();
//cout << "SVMSGDImpl::train trainSamples: \n" << trainSamples << endl;
int featureCount = trainSamples.cols;
Mat trainResponses = data->getTrainResponses(); // (trainSamplesCount x 1) matrix
//cout << "SVMSGDImpl::train trainresponses: \n" << trainResponses << endl;
std::pair<bool,bool> areEmpty = areClassesEmpty(trainResponses);
//cout << "SVMSGDImpl::train areEmpty" << areEmpty.first << "," << areEmpty.second << endl;
if ( areEmpty.first && areEmpty.second )
{
return false;
@@ -283,10 +268,9 @@ bool SVMSGDImpl::train(const Ptr<TrainData>& data, int)
}
Mat extendedTrainSamples;
Mat multiplier;
makeExtendedTrainSamples(trainSamples, extendedTrainSamples, multiplier);
//cout << "SVMSGDImpl::train extendedTrainSamples: \n" << extendedTrainSamples << endl;
Mat average;
float multiplier = 0;
makeExtendedTrainSamples(trainSamples, extendedTrainSamples, average, multiplier);
int extendedTrainSamplesCount = extendedTrainSamples.rows;
int extendedFeatureCount = extendedTrainSamples.cols;
@@ -301,6 +285,7 @@ bool SVMSGDImpl::train(const Ptr<TrainData>& data, int)
RNG rng(0);
CV_Assert (params.termCrit.type & TermCriteria::COUNT || params.termCrit.type & TermCriteria::EPS);
int maxCount = (params.termCrit.type & TermCriteria::COUNT) ? params.termCrit.maxCount : INT_MAX;
double epsilon = (params.termCrit.type & TermCriteria::EPS) ? params.termCrit.epsilon : 0;
@@ -336,17 +321,20 @@ bool SVMSGDImpl::train(const Ptr<TrainData>& data, int)
extendedWeights = averageExtendedWeights;
}
//cout << "SVMSGDImpl::train extendedWeights: \n" << extendedWeights << endl;
Rect roi(0, 0, featureCount, 1);
weights_ = extendedWeights(roi);
weights_ = weights_.mul(1/multiplier);
weights_ *= multiplier;
//cout << "SVMSGDImpl::train weights: \n" << weights_ << endl;
CV_Assert(params.marginType == SOFT_MARGIN || params.marginType == HARD_MARGIN);
shift_ = calcShift(trainSamples, trainResponses);
//cout << "SVMSGDImpl::train shift = " << shift_ << endl;
if (params.marginType == SOFT_MARGIN)
{
shift_ = extendedWeights.at<float>(featureCount) - weights_.dot(average);
}
else
{
shift_ = calcShift(trainSamples, trainResponses);
}
return true;
}
@@ -385,6 +373,8 @@ float SVMSGDImpl::predict( InputArray _samples, OutputArray _results, int ) cons
bool SVMSGDImpl::isClassifier() const
{
return (params.svmsgdType == SGD || params.svmsgdType == ASGD)
&&
(params.marginType == SOFT_MARGIN || params.marginType == HARD_MARGIN)
&&
(params.lambda > 0) && (params.gamma0 > 0) && (params.c >= 0);
}
@@ -417,15 +407,32 @@ void SVMSGDImpl::writeParams( FileStorage& fs ) const
case ASGD:
SvmsgdTypeStr = "ASGD";
break;
case ILLEGAL_VALUE:
SvmsgdTypeStr = format("Uknown_%d", params.svmsgdType);
case ILLEGAL_SVMSGD_TYPE:
SvmsgdTypeStr = format("Unknown_%d", params.svmsgdType);
default:
std::cout << "params.svmsgdType isn't initialized" << std::endl;
}
fs << "svmsgdType" << SvmsgdTypeStr;
String marginTypeStr;
switch (params.marginType)
{
case SOFT_MARGIN:
marginTypeStr = "SOFT_MARGIN";
break;
case HARD_MARGIN:
marginTypeStr = "HARD_MARGIN";
break;
case ILLEGAL_MARGIN_TYPE:
marginTypeStr = format("Unknown_%d", params.marginType);
default:
std::cout << "params.marginType isn't initialized" << std::endl;
}
fs << "marginType" << marginTypeStr;
fs << "lambda" << params.lambda;
fs << "gamma0" << params.gamma0;
fs << "c" << params.c;
@@ -438,8 +445,6 @@ void SVMSGDImpl::writeParams( FileStorage& fs ) const
fs << "}";
}
void SVMSGDImpl::read(const FileNode& fn)
{
clear();
@@ -455,13 +460,23 @@ void SVMSGDImpl::readParams( const FileNode& fn )
String svmsgdTypeStr = (String)fn["svmsgdType"];
SvmsgdType svmsgdType =
svmsgdTypeStr == "SGD" ? SGD :
svmsgdTypeStr == "ASGD" ? ASGD : ILLEGAL_VALUE;
svmsgdTypeStr == "ASGD" ? ASGD : ILLEGAL_SVMSGD_TYPE;
if( svmsgdType == ILLEGAL_VALUE )
if( svmsgdType == ILLEGAL_SVMSGD_TYPE )
CV_Error( CV_StsParseError, "Missing or invalid SVMSGD type" );
params.svmsgdType = svmsgdType;
String marginTypeStr = (String)fn["marginType"];
MarginType marginType =
marginTypeStr == "SOFT_MARGIN" ? SOFT_MARGIN :
marginTypeStr == "HARD_MARGIN" ? HARD_MARGIN : ILLEGAL_MARGIN_TYPE;
if( marginType == ILLEGAL_MARGIN_TYPE )
CV_Error( CV_StsParseError, "Missing or invalid margin type" );
params.marginType = marginType;
CV_Assert ( fn["lambda"].isReal() );
params.lambda = (float)fn["lambda"];
@@ -494,7 +509,8 @@ SVMSGDImpl::SVMSGDImpl()
{
clear();
params.svmsgdType = ILLEGAL_VALUE;
params.svmsgdType = ILLEGAL_SVMSGD_TYPE;
params.marginType = ILLEGAL_MARGIN_TYPE;
// Parameters for learning
params.lambda = 0; // regularization
@@ -505,26 +521,28 @@ SVMSGDImpl::SVMSGDImpl()
params.termCrit = _termCrit;
}
void SVMSGDImpl::setOptimalParameters(int type)
void SVMSGDImpl::setOptimalParameters(int svmsgdType, int marginType)
{
switch (type)
switch (svmsgdType)
{
case SGD:
params.svmsgdType = SGD;
params.marginType = (marginType == SOFT_MARGIN) ? SOFT_MARGIN :
(marginType == HARD_MARGIN) ? HARD_MARGIN : ILLEGAL_MARGIN_TYPE;
params.lambda = 0.0001;
params.gamma0 = 0.05;
params.c = 1;
params.termCrit.maxCount = 100000;
params.termCrit.epsilon = 0.00001;
params.termCrit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100000, 0.00001);
break;
case ASGD:
params.svmsgdType = ASGD;
params.marginType = (marginType == SOFT_MARGIN) ? SOFT_MARGIN :
(marginType == HARD_MARGIN) ? HARD_MARGIN : ILLEGAL_MARGIN_TYPE;
params.lambda = 0.00001;
params.gamma0 = 0.05;
params.c = 0.75;
params.termCrit.maxCount = 100000;
params.termCrit.epsilon = 0.00001;
params.termCrit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100000, 0.00001);
break;
default:
@@ -532,7 +550,7 @@ void SVMSGDImpl::setOptimalParameters(int type)
}
}
void SVMSGDImpl::setType(int type)
void SVMSGDImpl::setSvmsgdType(int type)
{
switch (type)
{
@@ -543,13 +561,33 @@ void SVMSGDImpl::setType(int type)
params.svmsgdType = ASGD;
break;
default:
params.svmsgdType = ILLEGAL_VALUE;
params.svmsgdType = ILLEGAL_SVMSGD_TYPE;
}
}
int SVMSGDImpl::getType() const
int SVMSGDImpl::getSvmsgdType() const
{
return params.svmsgdType;
}
void SVMSGDImpl::setMarginType(int type)
{
switch (type)
{
case HARD_MARGIN:
params.marginType = HARD_MARGIN;
break;
case SOFT_MARGIN:
params.marginType = SOFT_MARGIN;
break;
default:
params.marginType = ILLEGAL_MARGIN_TYPE;
}
}
int SVMSGDImpl::getMarginType() const
{
return params.marginType;
}
} //ml
} //cv