refactoring
This commit is contained in:
parent
883d691c2b
commit
bfa26fd447
@ -57,6 +57,22 @@ struct Config
|
||||
|
||||
void read(const cv::FileNode& node);
|
||||
|
||||
// Scaled and shrunk model size.
|
||||
cv::Size model(ivector::const_iterator it) const
|
||||
{
|
||||
float octave = powf(2, *it);
|
||||
return cv::Size( cvRound(modelWinSize.width * octave) / shrinkage,
|
||||
cvRound(modelWinSize.height * octave) / shrinkage );
|
||||
}
|
||||
|
||||
// Scaled but, not shrunk bounding box for object in sample image.
|
||||
cv::Rect bbox(ivector::const_iterator it) const
|
||||
{
|
||||
float octave = powf(2, *it);
|
||||
return cv::Rect( cvRound(offset.x * octave), cvRound(offset.y * octave),
|
||||
cvRound(modelWinSize.width * octave), cvRound(modelWinSize.height * octave));
|
||||
}
|
||||
|
||||
// Paths to a rescaled data
|
||||
string trainPath;
|
||||
string testPath;
|
||||
|
@ -76,12 +76,14 @@ struct ICF
|
||||
|
||||
float operator() (const Mat& integrals, const cv::Size& model) const
|
||||
{
|
||||
const int* ptr = integrals.ptr<int>(0) + (model.height * channel + bb.y) * model.width + bb.x;
|
||||
int step = model.width + 1;
|
||||
|
||||
const int* ptr = integrals.ptr<int>(0) + (model.height * channel + bb.y) * step + bb.x;
|
||||
|
||||
int a = ptr[0];
|
||||
int b = ptr[bb.width];
|
||||
|
||||
ptr += bb.height * model.width;
|
||||
ptr += bb.height * step;
|
||||
|
||||
int c = ptr[bb.width];
|
||||
int d = ptr[0];
|
||||
@ -92,13 +94,17 @@ struct ICF
|
||||
private:
|
||||
cv::Rect bb;
|
||||
int channel;
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& out, const ICF& m);
|
||||
};
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, const ICF& m);
|
||||
|
||||
class FeaturePool
|
||||
{
|
||||
public:
|
||||
FeaturePool(cv::Size model, int nfeatures);
|
||||
~FeaturePool();
|
||||
|
||||
int size() const { return (int)pool.size(); }
|
||||
float apply(int fi, int si, const Mat& integrals) const;
|
||||
|
||||
@ -122,7 +128,7 @@ public:
|
||||
Octave(cv::Rect boundingBox, int npositives, int nnegatives, int logScale, int shrinkage);
|
||||
virtual ~Octave();
|
||||
|
||||
virtual bool train(const Dataset& dataset, const FeaturePool& pool);
|
||||
virtual bool train(const Dataset& dataset, const FeaturePool& pool, int weaks, int treeDepth);
|
||||
|
||||
int logScale;
|
||||
|
||||
@ -144,7 +150,6 @@ private:
|
||||
Mat responses;
|
||||
|
||||
CvBoostParams params;
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -43,16 +43,6 @@
|
||||
#include <sft/octave.hpp>
|
||||
#include <sft/random.hpp>
|
||||
|
||||
#if defined VISUALIZE_GENERATION
|
||||
# define show(a, b) \
|
||||
do { \
|
||||
cv::imshow(a,b); \
|
||||
cv::waitkey(0); \
|
||||
} while(0)
|
||||
#else
|
||||
# define show(a, b)
|
||||
#endif
|
||||
|
||||
#include <glob.h>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
@ -63,13 +53,7 @@ sft::Octave::Octave(cv::Rect bb, int np, int nn, int ls, int shr)
|
||||
{
|
||||
int maxSample = npositives + nnegatives;
|
||||
responses.create(maxSample, 1, CV_32FC1);
|
||||
}
|
||||
|
||||
sft::Octave::~Octave(){}
|
||||
|
||||
bool sft::Octave::train( const cv::Mat& trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
|
||||
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
|
||||
{
|
||||
CvBoostParams _params;
|
||||
{
|
||||
// tree params
|
||||
@ -79,27 +63,35 @@ bool sft::Octave::train( const cv::Mat& trainData, const cv::Mat& _responses, co
|
||||
_params.truncate_pruned_tree = false;
|
||||
_params.use_surrogates = false;
|
||||
_params.use_1se_rule = false;
|
||||
_params.regression_accuracy = 0.0;
|
||||
_params.regression_accuracy = 1.0e-6;
|
||||
|
||||
// boost params
|
||||
_params.boost_type = CvBoost::GENTLE;
|
||||
_params.split_criteria = CvBoost::SQERR;
|
||||
_params.weight_trim_rate = 0.95;
|
||||
|
||||
|
||||
/// ToDo: move to params
|
||||
// simple defaults
|
||||
_params.min_sample_count = 2;
|
||||
_params.weak_count = 1;
|
||||
}
|
||||
|
||||
std::cout << "WARNING: " << sampleIdx << std::endl;
|
||||
std::cout << "WARNING: " << trainData << std::endl;
|
||||
std::cout << "WARNING: " << _responses << std::endl;
|
||||
std::cout << "WARNING: " << varIdx << std::endl;
|
||||
std::cout << "WARNING: " << varType << std::endl;
|
||||
params = _params;
|
||||
}
|
||||
|
||||
sft::Octave::~Octave(){}
|
||||
|
||||
bool sft::Octave::train( const cv::Mat& trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
|
||||
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
|
||||
{
|
||||
|
||||
std::cout << "WARNING: sampleIdx " << sampleIdx << std::endl;
|
||||
std::cout << "WARNING: trainData " << trainData << std::endl;
|
||||
std::cout << "WARNING: _responses " << _responses << std::endl;
|
||||
std::cout << "WARNING: varIdx" << varIdx << std::endl;
|
||||
std::cout << "WARNING: varType" << varType << std::endl;
|
||||
|
||||
bool update = false;
|
||||
return cv::Boost::train(trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, _params,
|
||||
return cv::Boost::train(trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, params,
|
||||
update);
|
||||
}
|
||||
|
||||
@ -164,29 +156,30 @@ public:
|
||||
};
|
||||
}
|
||||
|
||||
// ToDo: parallelize it
|
||||
// ToDo: parallelize it, fix curring
|
||||
// ToDo: sunch model size and shrinced model size usage/ Now model size mean already shrinked model
|
||||
void sft::Octave::processPositives(const Dataset& dataset, const FeaturePool& pool)
|
||||
{
|
||||
Preprocessor prepocessor(shrinkage);
|
||||
|
||||
int w = 64 * pow(2, logScale) /shrinkage;
|
||||
int h = 128 * pow(2, logScale) /shrinkage * 10;
|
||||
int w = boundingBox.width;
|
||||
int h = boundingBox.height;
|
||||
|
||||
integrals.create(pool.size(), (w + 1) * (h + 1), CV_32SC1);
|
||||
integrals.create(pool.size(), (w / shrinkage + 1) * (h / shrinkage * 10 + 1), CV_32SC1);
|
||||
|
||||
int total = 0;
|
||||
|
||||
for (svector::const_iterator it = dataset.pos.begin(); it != dataset.pos.end(); ++it)
|
||||
{
|
||||
const string& curr = *it;
|
||||
|
||||
dprintf("Process candidate positive image %s\n", curr.c_str());
|
||||
|
||||
cv::Mat sample = cv::imread(curr);
|
||||
cv::Mat channels = integrals.row(total).reshape(0, h + 1);
|
||||
prepocessor.apply(sample, channels);
|
||||
cv::Mat sample = cv::imread(curr);
|
||||
|
||||
cv::Mat channels = integrals.row(total).reshape(0, h / shrinkage * 10 + 1);
|
||||
sample = sample(boundingBox);
|
||||
|
||||
prepocessor.apply(sample, channels);
|
||||
responses.ptr<float>(total)[0] = 1.f;
|
||||
|
||||
if (++total >= npositives) break;
|
||||
@ -204,8 +197,8 @@ void sft::Octave::generateNegatives(const Dataset& dataset)
|
||||
sft::Random::engine eng;
|
||||
sft::Random::engine idxEng;
|
||||
|
||||
int w = 64 * pow(2, logScale) /shrinkage;
|
||||
int h = 128 * pow(2, logScale) /shrinkage * 10;
|
||||
int w = boundingBox.width;
|
||||
int h = boundingBox.height;
|
||||
|
||||
Preprocessor prepocessor(shrinkage);
|
||||
|
||||
@ -222,15 +215,9 @@ void sft::Octave::generateNegatives(const Dataset& dataset)
|
||||
dprintf("Process %s\n", dataset.neg[curr].c_str());
|
||||
|
||||
Mat frame = cv::imread(dataset.neg[curr]);
|
||||
prepocessor.apply(frame, sum);
|
||||
|
||||
std::cout << "WARNING: " << frame.cols << " " << frame.rows << std::endl;
|
||||
std::cout << "WARNING: " << frame.cols / shrinkage << " " << frame.rows / shrinkage << std::endl;
|
||||
|
||||
int maxW = frame.cols / shrinkage - 2 * boundingBox.x - boundingBox.width;
|
||||
int maxH = frame.rows / shrinkage - 2 * boundingBox.y - boundingBox.height;
|
||||
|
||||
std::cout << "WARNING: " << maxW << " " << maxH << std::endl;
|
||||
int maxW = frame.cols - 2 * boundingBox.x - boundingBox.width;
|
||||
int maxH = frame.rows - 2 * boundingBox.y - boundingBox.height;
|
||||
|
||||
sft::Random::uniform wRand(0, maxW -1);
|
||||
sft::Random::uniform hRand(0, maxH -1);
|
||||
@ -238,19 +225,16 @@ void sft::Octave::generateNegatives(const Dataset& dataset)
|
||||
int dx = wRand(eng);
|
||||
int dy = hRand(eng);
|
||||
|
||||
std::cout << "WARNING: " << dx << " " << dy << std::endl;
|
||||
std::cout << "WARNING: " << dx + boundingBox.width + 1 << " " << dy + boundingBox.height + 1 << std::endl;
|
||||
std::cout << "WARNING: " << sum.cols << " " << sum.rows << std::endl;
|
||||
frame = frame(cv::Rect(dx, dy, boundingBox.width, boundingBox.height));
|
||||
|
||||
sum = sum(cv::Rect(dx, dy, boundingBox.width + 1, boundingBox.height * 10 + 1));
|
||||
cv::Mat channels = integrals.row(i).reshape(0, h / shrinkage * 10 + 1);
|
||||
prepocessor.apply(frame, channels);
|
||||
|
||||
dprintf("generated %d %d\n", dx, dy);
|
||||
|
||||
// if (predict(sum))
|
||||
// // if (predict(sum))
|
||||
{
|
||||
responses.ptr<float>(i)[0] = 0.f;
|
||||
// sum = sum.reshape(0, 1);
|
||||
sum.copyTo(integrals.row(i).reshape(0, h + 1));
|
||||
++i;
|
||||
}
|
||||
}
|
||||
@ -258,11 +242,18 @@ void sft::Octave::generateNegatives(const Dataset& dataset)
|
||||
dprintf("Processing negatives finished:\n\trequested %d negatives, viewed %d samples.\n", nnegatives, total);
|
||||
}
|
||||
|
||||
bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool)
|
||||
bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool, int weaks, int treeDepth)
|
||||
{
|
||||
CV_Assert(treeDepth == 2);
|
||||
CV_Assert(weaks > 0);
|
||||
|
||||
params.max_depth = treeDepth;
|
||||
params.weak_count = weaks;
|
||||
|
||||
// 1. fill integrals and classes
|
||||
processPositives(dataset, pool);
|
||||
generateNegatives(dataset);
|
||||
// exit(0);
|
||||
|
||||
// 2. only sumple case (all features used)
|
||||
int nfeatures = pool.size();
|
||||
@ -313,8 +304,6 @@ sft::FeaturePool::FeaturePool(cv::Size m, int n) : model(m), nfeatures(n)
|
||||
fill(nfeatures);
|
||||
}
|
||||
|
||||
sft::FeaturePool::~FeaturePool(){}
|
||||
|
||||
float sft::FeaturePool::apply(int fi, int si, const Mat& integrals) const
|
||||
{
|
||||
return pool[fi](integrals.row(si), model);
|
||||
@ -323,13 +312,13 @@ float sft::FeaturePool::apply(int fi, int si, const Mat& integrals) const
|
||||
|
||||
void sft::FeaturePool::fill(int desired)
|
||||
{
|
||||
|
||||
int mw = model.width;
|
||||
int mh = model.height;
|
||||
|
||||
int maxPoolSize = (mw -1) * mw / 2 * (mh - 1) * mh / 2 * N_CHANNELS;
|
||||
|
||||
nfeatures = std::min(desired, maxPoolSize);
|
||||
dprintf("Requeste feature pool %d max %d suggested %d\n", desired, maxPoolSize, nfeatures);
|
||||
|
||||
pool.reserve(nfeatures);
|
||||
|
||||
@ -363,10 +352,19 @@ void sft::FeaturePool::fill(int desired)
|
||||
sft::ICF f(x, y, w, h, ch);
|
||||
|
||||
if (std::find(pool.begin(), pool.end(),f) == pool.end())
|
||||
{
|
||||
// std::cout << f << std::endl;
|
||||
pool.push_back(f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::ostream& sft::operator<<(std::ostream& out, const sft::ICF& m)
|
||||
{
|
||||
out << m.channel << " " << m.bb;
|
||||
return out;
|
||||
}
|
||||
|
||||
// ============ Dataset ============ //
|
||||
namespace {
|
||||
using namespace sft;
|
||||
|
@ -106,47 +106,34 @@ int main(int argc, char** argv)
|
||||
// 3. Train all octaves
|
||||
for (ivector::const_iterator it = cfg.octaves.begin(); it != cfg.octaves.end(); ++it)
|
||||
{
|
||||
// a. create rangom feature pool
|
||||
int nfeatures = cfg.poolSize;
|
||||
cv::Size model = cfg.model(it);
|
||||
std::cout << "Model " << model << std::endl;
|
||||
sft::FeaturePool pool(model, nfeatures);
|
||||
nfeatures = pool.size();
|
||||
|
||||
|
||||
int npositives = cfg.positives;
|
||||
int nnegatives = cfg.negatives;
|
||||
|
||||
int shrinkage = cfg.shrinkage;
|
||||
int octave = *it;
|
||||
cv::Rect boundingBox = cfg.bbox(it);
|
||||
std::cout << "Object bounding box" << boundingBox << std::endl;
|
||||
|
||||
sft::Octave boost(boundingBox, npositives, nnegatives, *it, shrinkage);
|
||||
|
||||
cv::Size model = cv::Size(cfg.modelWinSize.width / cfg.shrinkage, cfg.modelWinSize.height / cfg.shrinkage );
|
||||
std::string path = cfg.trainPath;
|
||||
|
||||
cv::Rect boundingBox(cfg.offset.x / cfg.shrinkage, cfg.offset.y / cfg.shrinkage,
|
||||
cfg.modelWinSize.width / cfg.shrinkage, cfg.modelWinSize.height / cfg.shrinkage);
|
||||
|
||||
sft::Octave boost(boundingBox, npositives, nnegatives, octave, shrinkage);
|
||||
|
||||
sft::FeaturePool pool(model, nfeatures);
|
||||
sft::Dataset dataset(path, boost.logScale);
|
||||
|
||||
if (boost.train(dataset, pool))
|
||||
if (boost.train(dataset, pool, cfg.weaks, cfg.treeDepth))
|
||||
{
|
||||
}
|
||||
std::cout << "Octave " << octave << " was successfully trained..." << std::endl;
|
||||
// // d. crain octave
|
||||
// if (octave.train(pool, cfg.positives, cfg.negatives, cfg.weaks))
|
||||
// {
|
||||
std::cout << "Octave " << *it << " was successfully trained..." << std::endl;
|
||||
// strong.push_back(octave);
|
||||
// }
|
||||
}
|
||||
}
|
||||
|
||||
// fso << "]" << "}";
|
||||
|
||||
// // 3. create Soft Cascade
|
||||
// // sft::SCascade cascade(cfg.modelWinSize, cfg.octs, cfg.shrinkage);
|
||||
|
||||
// // // 4. Generate feature pool
|
||||
// // std::vector<sft::ICF> pool;
|
||||
// // sft::fillPool(pool, cfg.poolSize, cfg.modelWinSize / cfg.shrinkage, cfg.seed);
|
||||
|
||||
// // // 5. Train all octaves
|
||||
// // cascade.train(cfg.trainPath);
|
||||
|
||||
// // // 6. Set thresolds
|
||||
// // cascade.prune();
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user