diff --git a/modules/ml/src/gbt.cpp b/modules/ml/src/gbt.cpp index 2d4259b82..446fe9cc7 100644 --- a/modules/ml/src/gbt.cpp +++ b/modules/ml/src/gbt.cpp @@ -601,8 +601,8 @@ float CvGBTrees::find_optimal_value( const CvMat* _Idx ) case ABSOLUTE_LOSS: { float* residuals = new float[n]; - for (int i=0; i<n; ++i) - residuals[i] = (resp_data[*idx] - cur_data[*idx++]); + for (int i=0; i<n; ++i, ++idx) + residuals[i] = (resp_data[*idx] - cur_data[*idx]); icvSortFloat(residuals, n, 0.0f); if (n % 2) gamma = residuals[n/2]; @@ -613,8 +613,8 @@ float CvGBTrees::find_optimal_value( const CvMat* _Idx ) case HUBER_LOSS: { float* residuals = new float[n]; - for (int i=0; i<n; ++i) - residuals[i] = (resp_data[*idx] - cur_data[*idx++]); + for (int i=0; i<n; ++i, ++idx) + residuals[i] = (resp_data[*idx] - cur_data[*idx]); icvSortFloat(residuals, n, 0.0f); int n_half = n >> 1; @@ -781,9 +781,6 @@ float CvGBTrees::predict( const CvMat* _sample, const CvMat* _missing, void CvGBTrees::write_params( CvFileStorage* fs ) const { - CV_FUNCNAME( "CvGBTrees::write_params" ); - __BEGIN__; - const char* loss_function_type_str = params.loss_function_type == SQUARED_LOSS ? "SquaredLoss" : params.loss_function_type == ABSOLUTE_LOSS ? "AbsoluteLoss" : @@ -806,8 +803,6 @@ void CvGBTrees::write_params( CvFileStorage* fs ) const data->is_classifier = !problem_type(); data->write_params( fs ); data->is_classifier = 0; - - __END__; }