Reverted r8721 and r8725 (issue #2080)

This commit is contained in:
Andrey Kamaev 2012-06-24 08:50:03 +00:00
parent 74707ec7ae
commit bd901eb52d
8 changed files with 189 additions and 460 deletions

View File

@ -7,73 +7,22 @@
#include <vector> #include <vector>
namespace cv
{
class DetectionBasedTracker class DetectionBasedTracker
{ {
public: public:
struct Parameters struct Parameters
{ {
int minObjectSize;
int maxObjectSize;
double scaleFactor;
int maxTrackLifetime; int maxTrackLifetime;
int minNeighbors;
int minDetectionPeriod; //the minimal time between run of the big object detector (on the whole frame) in ms (1000 mean 1 sec), default=0 int minDetectionPeriod; //the minimal time between run of the big object detector (on the whole frame) in ms (1000 mean 1 sec), default=0
Parameters(); Parameters();
}; };
class IDetector DetectionBasedTracker(const std::string& cascadeFilename, const Parameters& params);
{
public:
IDetector():
minObjSize(96, 96),
maxObjSize(INT_MAX, INT_MAX),
minNeighbours(2),
scaleFactor(1.1f)
{}
virtual void detect(const cv::Mat& Image, std::vector<cv::Rect>& objects) = 0;
void setMinObjectSize(const cv::Size& min)
{
minObjSize = min;
}
void setMaxObjectSize(const cv::Size& max)
{
maxObjSize = max;
}
cv::Size getMinObjectSize() const
{
return minObjSize;
}
cv::Size getMaxObjectSize() const
{
return maxObjSize;
}
float getScaleFactor()
{
return scaleFactor;
}
void setScaleFactor(float value)
{
scaleFactor = value;
}
int getMinNeighbours()
{
return minNeighbours;
}
void setMinNeighbours(int value)
{
minNeighbours = value;
}
virtual ~IDetector() {}
protected:
cv::Size minObjSize;
cv::Size maxObjSize;
int minNeighbours;
float scaleFactor;
};
DetectionBasedTracker(cv::Ptr<IDetector> MainDetector, cv::Ptr<IDetector> TrackingDetector, const Parameters& params);
virtual ~DetectionBasedTracker(); virtual ~DetectionBasedTracker();
virtual bool run(); virtual bool run();
@ -95,6 +44,7 @@ class DetectionBasedTracker
cv::Ptr<SeparateDetectionWork> separateDetectionWork; cv::Ptr<SeparateDetectionWork> separateDetectionWork;
friend void* workcycleObjectDetectorFunction(void* p); friend void* workcycleObjectDetectorFunction(void* p);
struct InnerParameters struct InnerParameters
{ {
int numLastPositionsToTrack; int numLastPositionsToTrack;
@ -140,11 +90,13 @@ class DetectionBasedTracker
std::vector<float> weightsPositionsSmoothing; std::vector<float> weightsPositionsSmoothing;
std::vector<float> weightsSizesSmoothing; std::vector<float> weightsSizesSmoothing;
cv::Ptr<IDetector> cascadeForTracking; cv::CascadeClassifier cascadeForTracking;
void updateTrackedObjects(const std::vector<cv::Rect>& detectedObjects); void updateTrackedObjects(const std::vector<cv::Rect>& detectedObjects);
cv::Rect calcTrackedObjectPositionToShow(int i) const; cv::Rect calcTrackedObjectPositionToShow(int i) const;
void detectInRegion(const cv::Mat& img, const cv::Rect& r, std::vector<cv::Rect>& detectedObjectsInRegions); void detectInRegion(const cv::Mat& img, const cv::Rect& r, std::vector<cv::Rect>& detectedObjectsInRegions);
}; };
} //end of cv namespace
#endif #endif

View File

@ -40,7 +40,6 @@ static inline cv::Point2f centerRect(const cv::Rect& r)
{ {
return cv::Point2f(r.x+((float)r.width)/2, r.y+((float)r.height)/2); return cv::Point2f(r.x+((float)r.width)/2, r.y+((float)r.height)/2);
}; };
static inline cv::Rect scale_rect(const cv::Rect& r, float scale) static inline cv::Rect scale_rect(const cv::Rect& r, float scale)
{ {
cv::Point2f m=centerRect(r); cv::Point2f m=centerRect(r);
@ -52,15 +51,11 @@ static inline cv::Rect scale_rect(const cv::Rect& r, float scale)
return cv::Rect(x, y, cvRound(width), cvRound(height)); return cv::Rect(x, y, cvRound(width), cvRound(height));
}; };
namespace cv void* workcycleObjectDetectorFunction(void* p);
{ class DetectionBasedTracker::SeparateDetectionWork
void* workcycleObjectDetectorFunction(void* p);
}
class cv::DetectionBasedTracker::SeparateDetectionWork
{ {
public: public:
SeparateDetectionWork(cv::DetectionBasedTracker& _detectionBasedTracker, cv::Ptr<DetectionBasedTracker::IDetector> _detector); SeparateDetectionWork(DetectionBasedTracker& _detectionBasedTracker, const std::string& cascadeFilename);
virtual ~SeparateDetectionWork(); virtual ~SeparateDetectionWork();
bool communicateWithDetectingThread(const Mat& imageGray, vector<Rect>& rectsWhereRegions); bool communicateWithDetectingThread(const Mat& imageGray, vector<Rect>& rectsWhereRegions);
bool run(); bool run();
@ -82,7 +77,7 @@ class cv::DetectionBasedTracker::SeparateDetectionWork
protected: protected:
DetectionBasedTracker& detectionBasedTracker; DetectionBasedTracker& detectionBasedTracker;
cv::Ptr<DetectionBasedTracker::IDetector> cascadeInThread; cv::CascadeClassifier cascadeInThread;
pthread_t second_workthread; pthread_t second_workthread;
pthread_mutex_t mutex; pthread_mutex_t mutex;
@ -110,7 +105,7 @@ class cv::DetectionBasedTracker::SeparateDetectionWork
long long timeWhenDetectingThreadStartedWork; long long timeWhenDetectingThreadStartedWork;
}; };
cv::DetectionBasedTracker::SeparateDetectionWork::SeparateDetectionWork(DetectionBasedTracker& _detectionBasedTracker, cv::Ptr<DetectionBasedTracker::IDetector> _detector) DetectionBasedTracker::SeparateDetectionWork::SeparateDetectionWork(DetectionBasedTracker& _detectionBasedTracker, const std::string& cascadeFilename)
:detectionBasedTracker(_detectionBasedTracker), :detectionBasedTracker(_detectionBasedTracker),
cascadeInThread(), cascadeInThread(),
isObjectDetectingReady(false), isObjectDetectingReady(false),
@ -118,10 +113,9 @@ cv::DetectionBasedTracker::SeparateDetectionWork::SeparateDetectionWork(Detectio
stateThread(STATE_THREAD_STOPPED), stateThread(STATE_THREAD_STOPPED),
timeWhenDetectingThreadStartedWork(-1) timeWhenDetectingThreadStartedWork(-1)
{ {
CV_Assert(!_detector.empty()); if(!cascadeInThread.load(cascadeFilename)) {
CV_Error(CV_StsBadArg, "DetectionBasedTracker::SeparateDetectionWork::SeparateDetectionWork: Cannot load a cascade from the file '"+cascadeFilename+"'");
cascadeInThread = _detector; }
int res=0; int res=0;
res=pthread_mutex_init(&mutex, NULL);//TODO: should be attributes? res=pthread_mutex_init(&mutex, NULL);//TODO: should be attributes?
if (res) { if (res) {
@ -143,7 +137,7 @@ cv::DetectionBasedTracker::SeparateDetectionWork::SeparateDetectionWork(Detectio
} }
} }
cv::DetectionBasedTracker::SeparateDetectionWork::~SeparateDetectionWork() DetectionBasedTracker::SeparateDetectionWork::~SeparateDetectionWork()
{ {
if(stateThread!=STATE_THREAD_STOPPED) { if(stateThread!=STATE_THREAD_STOPPED) {
LOGE("\n\n\nATTENTION!!! dangerous algorithm error: destructor DetectionBasedTracker::DetectionBasedTracker::~SeparateDetectionWork is called before stopping the workthread"); LOGE("\n\n\nATTENTION!!! dangerous algorithm error: destructor DetectionBasedTracker::DetectionBasedTracker::~SeparateDetectionWork is called before stopping the workthread");
@ -153,7 +147,7 @@ cv::DetectionBasedTracker::SeparateDetectionWork::~SeparateDetectionWork()
pthread_cond_destroy(&objectDetectorRun); pthread_cond_destroy(&objectDetectorRun);
pthread_mutex_destroy(&mutex); pthread_mutex_destroy(&mutex);
} }
bool cv::DetectionBasedTracker::SeparateDetectionWork::run() bool DetectionBasedTracker::SeparateDetectionWork::run()
{ {
LOGD("DetectionBasedTracker::SeparateDetectionWork::run() --- start"); LOGD("DetectionBasedTracker::SeparateDetectionWork::run() --- start");
pthread_mutex_lock(&mutex); pthread_mutex_lock(&mutex);
@ -202,18 +196,18 @@ do {
} while(0) } while(0)
#endif #endif
void* cv::workcycleObjectDetectorFunction(void* p) void* workcycleObjectDetectorFunction(void* p)
{ {
CATCH_ALL_AND_LOG({ ((cv::DetectionBasedTracker::SeparateDetectionWork*)p)->workcycleObjectDetector(); }); CATCH_ALL_AND_LOG({ ((DetectionBasedTracker::SeparateDetectionWork*)p)->workcycleObjectDetector(); });
try{ try{
((cv::DetectionBasedTracker::SeparateDetectionWork*)p)->stateThread = cv::DetectionBasedTracker::SeparateDetectionWork::STATE_THREAD_STOPPED; ((DetectionBasedTracker::SeparateDetectionWork*)p)->stateThread=DetectionBasedTracker::SeparateDetectionWork::STATE_THREAD_STOPPED;
} catch(...) { } catch(...) {
LOGE0("DetectionBasedTracker: workcycleObjectDetectorFunction: ERROR concerning pointer, received as the function parameter"); LOGE0("DetectionBasedTracker: workcycleObjectDetectorFunction: ERROR concerning pointer, received as the function parameter");
} }
return NULL; return NULL;
} }
void cv::DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() void DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector()
{ {
static double freq = getTickFrequency(); static double freq = getTickFrequency();
LOGD0("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- start"); LOGD0("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- start");
@ -280,17 +274,20 @@ void cv::DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector()
int64 t1_detect=getTickCount(); int64 t1_detect=getTickCount();
cascadeInThread->detect(imageSeparateDetecting, objects); int minObjectSize=detectionBasedTracker.parameters.minObjectSize;
Size min_objectSize=Size(minObjectSize, minObjectSize);
/*cascadeInThread.detectMultiScale( imageSeparateDetecting, objects, int maxObjectSize=detectionBasedTracker.parameters.maxObjectSize;
Size max_objectSize(maxObjectSize, maxObjectSize);
cascadeInThread.detectMultiScale( imageSeparateDetecting, objects,
detectionBasedTracker.parameters.scaleFactor, detectionBasedTracker.parameters.minNeighbors, 0 detectionBasedTracker.parameters.scaleFactor, detectionBasedTracker.parameters.minNeighbors, 0
|CV_HAAR_SCALE_IMAGE |CV_HAAR_SCALE_IMAGE
, ,
min_objectSize, min_objectSize,
max_objectSize max_objectSize
); );
*/
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- end handling imageSeparateDetecting"); LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- end handling imageSeparateDetecting");
if (!isWorking()) { if (!isWorking()) {
@ -336,7 +333,7 @@ void cv::DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector()
LOGI("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector: Returning"); LOGI("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector: Returning");
} }
void cv::DetectionBasedTracker::SeparateDetectionWork::stop() void DetectionBasedTracker::SeparateDetectionWork::stop()
{ {
//FIXME: TODO: should add quickStop functionality //FIXME: TODO: should add quickStop functionality
pthread_mutex_lock(&mutex); pthread_mutex_lock(&mutex);
@ -353,7 +350,7 @@ void cv::DetectionBasedTracker::SeparateDetectionWork::stop()
pthread_mutex_unlock(&mutex); pthread_mutex_unlock(&mutex);
} }
void cv::DetectionBasedTracker::SeparateDetectionWork::resetTracking() void DetectionBasedTracker::SeparateDetectionWork::resetTracking()
{ {
LOGD("DetectionBasedTracker::SeparateDetectionWork::resetTracking"); LOGD("DetectionBasedTracker::SeparateDetectionWork::resetTracking");
pthread_mutex_lock(&mutex); pthread_mutex_lock(&mutex);
@ -374,7 +371,7 @@ void cv::DetectionBasedTracker::SeparateDetectionWork::resetTracking()
} }
bool cv::DetectionBasedTracker::SeparateDetectionWork::communicateWithDetectingThread(const Mat& imageGray, vector<Rect>& rectsWhereRegions) bool DetectionBasedTracker::SeparateDetectionWork::communicateWithDetectingThread(const Mat& imageGray, vector<Rect>& rectsWhereRegions)
{ {
static double freq = getTickFrequency(); static double freq = getTickFrequency();
@ -423,13 +420,19 @@ bool cv::DetectionBasedTracker::SeparateDetectionWork::communicateWithDetectingT
return shouldHandleResult; return shouldHandleResult;
} }
cv::DetectionBasedTracker::Parameters::Parameters() DetectionBasedTracker::Parameters::Parameters()
{ {
minObjectSize=96;
maxObjectSize=INT_MAX;
scaleFactor=1.1;
maxTrackLifetime=5; maxTrackLifetime=5;
minNeighbors=2;
minDetectionPeriod=0; minDetectionPeriod=0;
} }
cv::DetectionBasedTracker::InnerParameters::InnerParameters()
DetectionBasedTracker::InnerParameters::InnerParameters()
{ {
numLastPositionsToTrack=4; numLastPositionsToTrack=4;
numStepsToWaitBeforeFirstShow=6; numStepsToWaitBeforeFirstShow=6;
@ -441,32 +444,39 @@ cv::DetectionBasedTracker::InnerParameters::InnerParameters()
coeffObjectSpeedUsingInPrediction=0.8; coeffObjectSpeedUsingInPrediction=0.8;
} }
DetectionBasedTracker::DetectionBasedTracker(const std::string& cascadeFilename, const Parameters& params)
cv::DetectionBasedTracker::DetectionBasedTracker(cv::Ptr<IDetector> MainDetector, cv::Ptr<IDetector> TrackingDetector, const Parameters& params)
:separateDetectionWork(), :separateDetectionWork(),
parameters(params),
innerParameters(), innerParameters(),
numTrackedSteps(0), numTrackedSteps(0)
cascadeForTracking(TrackingDetector)
{ {
CV_Assert( (params.maxTrackLifetime >= 0) CV_Assert( (params.minObjectSize > 0)
&& (!MainDetector.empty()) && (params.maxObjectSize >= 0)
&& (!TrackingDetector.empty()) ); && (params.scaleFactor > 1.0)
&& (params.maxTrackLifetime >= 0) );
separateDetectionWork = new SeparateDetectionWork(*this, MainDetector); if (!cascadeForTracking.load(cascadeFilename)) {
CV_Error(CV_StsBadArg, "DetectionBasedTracker::DetectionBasedTracker: Cannot load a cascade from the file '"+cascadeFilename+"'");
}
parameters=params;
separateDetectionWork=new SeparateDetectionWork(*this, cascadeFilename);
weightsPositionsSmoothing.push_back(1); weightsPositionsSmoothing.push_back(1);
weightsSizesSmoothing.push_back(0.5); weightsSizesSmoothing.push_back(0.5);
weightsSizesSmoothing.push_back(0.3); weightsSizesSmoothing.push_back(0.3);
weightsSizesSmoothing.push_back(0.2); weightsSizesSmoothing.push_back(0.2);
}
cv::DetectionBasedTracker::~DetectionBasedTracker() }
DetectionBasedTracker::~DetectionBasedTracker()
{ {
} }
void DetectionBasedTracker::process(const Mat& imageGray) void DetectionBasedTracker::process(const Mat& imageGray)
{ {
CV_Assert(imageGray.type()==CV_8UC1); CV_Assert(imageGray.type()==CV_8UC1);
if (!separateDetectionWork->isWorking()) { if (!separateDetectionWork->isWorking()) {
@ -484,9 +494,15 @@ void DetectionBasedTracker::process(const Mat& imageGray)
Mat imageDetect=imageGray; Mat imageDetect=imageGray;
int D=parameters.minObjectSize;
if (D < 1)
D=1;
vector<Rect> rectsWhereRegions; vector<Rect> rectsWhereRegions;
bool shouldHandleResult=separateDetectionWork->communicateWithDetectingThread(imageGray, rectsWhereRegions); bool shouldHandleResult=separateDetectionWork->communicateWithDetectingThread(imageGray, rectsWhereRegions);
if (shouldHandleResult) { if (shouldHandleResult) {
LOGD("DetectionBasedTracker::process: get _rectsWhereRegions were got from resultDetect"); LOGD("DetectionBasedTracker::process: get _rectsWhereRegions were got from resultDetect");
} else { } else {
@ -501,6 +517,7 @@ void DetectionBasedTracker::process(const Mat& imageGray)
continue; continue;
} }
//correction by speed of rectangle //correction by speed of rectangle
if (n > 1) { if (n > 1) {
Point2f center=centerRect(r); Point2f center=centerRect(r);
@ -530,7 +547,7 @@ void DetectionBasedTracker::process(const Mat& imageGray)
updateTrackedObjects(detectedObjectsInRegions); updateTrackedObjects(detectedObjectsInRegions);
} }
void cv::DetectionBasedTracker::getObjects(std::vector<cv::Rect>& result) const void DetectionBasedTracker::getObjects(std::vector<cv::Rect>& result) const
{ {
result.clear(); result.clear();
@ -543,8 +560,7 @@ void cv::DetectionBasedTracker::getObjects(std::vector<cv::Rect>& result) const
LOGD("DetectionBasedTracker::process: found a object with SIZE %d x %d, rect={%d, %d, %d x %d}", r.width, r.height, r.x, r.y, r.width, r.height); LOGD("DetectionBasedTracker::process: found a object with SIZE %d x %d, rect={%d, %d, %d x %d}", r.width, r.height, r.x, r.y, r.width, r.height);
} }
} }
void DetectionBasedTracker::getObjects(std::vector<Object>& result) const
void cv::DetectionBasedTracker::getObjects(std::vector<Object>& result) const
{ {
result.clear(); result.clear();
@ -558,23 +574,25 @@ void cv::DetectionBasedTracker::getObjects(std::vector<Object>& result) const
} }
} }
bool cv::DetectionBasedTracker::run()
bool DetectionBasedTracker::run()
{ {
return separateDetectionWork->run(); return separateDetectionWork->run();
} }
void cv::DetectionBasedTracker::stop() void DetectionBasedTracker::stop()
{ {
separateDetectionWork->stop(); separateDetectionWork->stop();
} }
void cv::DetectionBasedTracker::resetTracking() void DetectionBasedTracker::resetTracking()
{ {
separateDetectionWork->resetTracking(); separateDetectionWork->resetTracking();
trackedObjects.clear(); trackedObjects.clear();
} }
void cv::DetectionBasedTracker::updateTrackedObjects(const vector<Rect>& detectedObjects) void DetectionBasedTracker::updateTrackedObjects(const vector<Rect>& detectedObjects)
{ {
enum { enum {
NEW_RECTANGLE=-1, NEW_RECTANGLE=-1,
@ -693,8 +711,7 @@ void cv::DetectionBasedTracker::updateTrackedObjects(const vector<Rect>& detecte
} }
} }
} }
Rect DetectionBasedTracker::calcTrackedObjectPositionToShow(int i) const
Rect cv::DetectionBasedTracker::calcTrackedObjectPositionToShow(int i) const
{ {
if ( (i < 0) || (i >= (int)trackedObjects.size()) ) { if ( (i < 0) || (i >= (int)trackedObjects.size()) ) {
LOGE("DetectionBasedTracker::calcTrackedObjectPositionToShow: ERROR: wrong i=%d", i); LOGE("DetectionBasedTracker::calcTrackedObjectPositionToShow: ERROR: wrong i=%d", i);
@ -726,8 +743,8 @@ Rect cv::DetectionBasedTracker::calcTrackedObjectPositionToShow(int i) const
double sum=0; double sum=0;
for(int j=0; j < Nsize; j++) { for(int j=0; j < Nsize; j++) {
int k=N-j-1; int k=N-j-1;
w += lastPositions[k].width * weightsSizesSmoothing[j]; w+= lastPositions[k].width * weightsSizesSmoothing[j];
h += lastPositions[k].height * weightsSizesSmoothing[j]; h+= lastPositions[k].height * weightsSizesSmoothing[j];
sum+=weightsSizesSmoothing[j]; sum+=weightsSizesSmoothing[j];
} }
w /= sum; w /= sum;
@ -775,7 +792,7 @@ Rect cv::DetectionBasedTracker::calcTrackedObjectPositionToShow(int i) const
return res; return res;
} }
void cv::DetectionBasedTracker::detectInRegion(const Mat& img, const Rect& r, vector<Rect>& detectedObjectsInRegions) void DetectionBasedTracker::detectInRegion(const Mat& img, const Rect& r, vector<Rect>& detectedObjectsInRegions)
{ {
Rect r0(Point(), img.size()); Rect r0(Point(), img.size());
Rect r1=scale_rect(r, innerParameters.coeffTrackingWindowSize); Rect r1=scale_rect(r, innerParameters.coeffTrackingWindowSize);
@ -785,7 +802,8 @@ void cv::DetectionBasedTracker::detectInRegion(const Mat& img, const Rect& r, ve
return; return;
} }
int d = cvRound(std::min(r.width, r.height) * innerParameters.coeffObjectSizeToTrack); int d=std::min(r.width, r.height);
d=cvRound(d * innerParameters.coeffObjectSizeToTrack);
vector<Rect> tmpobjects; vector<Rect> tmpobjects;
@ -793,17 +811,17 @@ void cv::DetectionBasedTracker::detectInRegion(const Mat& img, const Rect& r, ve
LOGD("DetectionBasedTracker::detectInRegion: img1.size()=%d x %d, d=%d", LOGD("DetectionBasedTracker::detectInRegion: img1.size()=%d x %d, d=%d",
img1.size().width, img1.size().height, d); img1.size().width, img1.size().height, d);
cascadeForTracking->setMinObjectSize(Size(d, d)); int maxObjectSize=parameters.maxObjectSize;
cascadeForTracking->detect(img1, tmpobjects); Size max_objectSize(maxObjectSize, maxObjectSize);
/*
detectMultiScale( img1, tmpobjects, cascadeForTracking.detectMultiScale( img1, tmpobjects,
parameters.scaleFactor, parameters.minNeighbors, 0 parameters.scaleFactor, parameters.minNeighbors, 0
|CV_HAAR_FIND_BIGGEST_OBJECT |CV_HAAR_FIND_BIGGEST_OBJECT
|CV_HAAR_SCALE_IMAGE |CV_HAAR_SCALE_IMAGE
, ,
Size(d,d), Size(d,d),
max_objectSize max_objectSize
);*/ );
for(size_t i=0; i < tmpobjects.size(); i++) { for(size_t i=0; i < tmpobjects.size(); i++) {
Rect curres(tmpobjects[i].tl() + r1.tl(), tmpobjects[i].size()); Rect curres(tmpobjects[i].tl() + r1.tl(), tmpobjects[i].size());
@ -811,9 +829,12 @@ void cv::DetectionBasedTracker::detectInRegion(const Mat& img, const Rect& r, ve
} }
} }
bool cv::DetectionBasedTracker::setParameters(const Parameters& params) bool DetectionBasedTracker::setParameters(const Parameters& params)
{ {
if ( params.maxTrackLifetime < 0 ) if ( (params.minObjectSize <= 0)
|| (params.maxObjectSize < 0)
|| (params.scaleFactor <= 1.0)
|| (params.maxTrackLifetime < 0) )
{ {
LOGE("DetectionBasedTracker::setParameters: ERROR: wrong parameters value"); LOGE("DetectionBasedTracker::setParameters: ERROR: wrong parameters value");
return false; return false;
@ -825,7 +846,7 @@ bool cv::DetectionBasedTracker::setParameters(const Parameters& params)
return true; return true;
} }
const cv::DetectionBasedTracker::Parameters& DetectionBasedTracker::getParameters() const DetectionBasedTracker::Parameters& DetectionBasedTracker::getParameters()
{ {
return parameters; return parameters;
} }

View File

@ -18,53 +18,6 @@ inline void vector_Rect_to_Mat(vector<Rect>& v_rect, Mat& mat)
mat = Mat(v_rect, true); mat = Mat(v_rect, true);
} }
class CascadeDetectorAdapter: public DetectionBasedTracker::IDetector
{
public:
CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector):
IDetector(),
Detector(detector)
{
LOGD("CascadeDetectorAdapter::Detect::Detect");
CV_Assert(!detector.empty());
}
void detect(const cv::Mat &Image, std::vector<cv::Rect> &objects)
{
LOGD("CascadeDetectorAdapter::Detect: begin");
LOGD("CascadeDetectorAdapter::Detect: scaleFactor=%.2f, minNeighbours=%d, minObjSize=(%dx%d), maxObjSize=(%dx%d)", scaleFactor, minNeighbours, minObjSize.width, minObjSize.height, maxObjSize.width, maxObjSize.height);
Detector->detectMultiScale(Image, objects, scaleFactor, minNeighbours, 0, minObjSize, maxObjSize);
LOGD("CascadeDetectorAdapter::Detect: end");
}
virtual ~CascadeDetectorAdapter()
{
LOGD("CascadeDetectorAdapter::Detect::~Detect");
}
private:
CascadeDetectorAdapter();
cv::Ptr<cv::CascadeClassifier> Detector;
};
struct DetectorAgregator
{
cv::Ptr<CascadeDetectorAdapter> mainDetector;
cv::Ptr<CascadeDetectorAdapter> trackingDetector;
cv::Ptr<DetectionBasedTracker> tracker;
DetectorAgregator(cv::Ptr<CascadeDetectorAdapter>& _mainDetector, cv::Ptr<CascadeDetectorAdapter>& _trackingDetector):
mainDetector(_mainDetector),
trackingDetector(_trackingDetector)
{
CV_Assert(!_mainDetector.empty());
CV_Assert(!_trackingDetector.empty());
DetectionBasedTracker::Parameters DetectorParams;
tracker = new DetectionBasedTracker(mainDetector.ptr<DetectionBasedTracker::IDetector>(), trackingDetector.ptr<DetectionBasedTracker::IDetector>(), DetectorParams);
}
};
JNIEXPORT jlong JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeCreateObject JNIEXPORT jlong JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeCreateObject
(JNIEnv * jenv, jclass, jstring jFileName, jint faceSize) (JNIEnv * jenv, jclass, jstring jFileName, jint faceSize)
{ {
@ -72,18 +25,12 @@ JNIEXPORT jlong JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeC
string stdFileName(jnamestr); string stdFileName(jnamestr);
jlong result = 0; jlong result = 0;
LOGD("Java_org_opencv_samples_fd_DetectionBasedTracker_nativeCreateObject");
try try
{ {
cv::Ptr<CascadeDetectorAdapter> mainDetector = new CascadeDetectorAdapter(new CascadeClassifier(stdFileName)); DetectionBasedTracker::Parameters DetectorParams;
cv::Ptr<CascadeDetectorAdapter> trackingDetector = new CascadeDetectorAdapter(new CascadeClassifier(stdFileName));
result = (jlong)new DetectorAgregator(mainDetector, trackingDetector);
if (faceSize > 0) if (faceSize > 0)
{ DetectorParams.minObjectSize = faceSize;
mainDetector->setMinObjectSize(Size(faceSize, faceSize)); result = (jlong)new DetectionBasedTracker(stdFileName, DetectorParams);
//trackingDetector->setMinObjectSize(Size(faceSize, faceSize));
}
} }
catch(cv::Exception e) catch(cv::Exception e)
{ {
@ -97,7 +44,7 @@ JNIEXPORT jlong JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeC
{ {
LOGD("nativeCreateObject catched unknown exception"); LOGD("nativeCreateObject catched unknown exception");
jclass je = jenv->FindClass("java/lang/Exception"); jclass je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, "Unknown exception in JNI code {Java_org_opencv_samples_fd_DetectionBasedTracker_nativeCreateObject(...)}"); jenv->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1VideoCapture__()}");
return 0; return 0;
} }
@ -107,12 +54,10 @@ JNIEXPORT jlong JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeC
JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeDestroyObject JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeDestroyObject
(JNIEnv * jenv, jclass, jlong thiz) (JNIEnv * jenv, jclass, jlong thiz)
{ {
LOGD("Java_org_opencv_samples_fd_DetectionBasedTracker_nativeDestroyObject");
try try
{ {
((DetectorAgregator*)thiz)->tracker->stop(); ((DetectionBasedTracker*)thiz)->stop();
delete (DetectorAgregator*)thiz; delete (DetectionBasedTracker*)thiz;
} }
catch(cv::Exception e) catch(cv::Exception e)
{ {
@ -126,18 +71,16 @@ JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeDe
{ {
LOGD("nativeDestroyObject catched unknown exception"); LOGD("nativeDestroyObject catched unknown exception");
jclass je = jenv->FindClass("java/lang/Exception"); jclass je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, "Unknown exception in JNI code {Java_org_opencv_samples_fd_DetectionBasedTracker_nativeDestroyObject(...)}"); jenv->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1VideoCapture__()}");
} }
} }
JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeStart JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeStart
(JNIEnv * jenv, jclass, jlong thiz) (JNIEnv * jenv, jclass, jlong thiz)
{ {
LOGD("Java_org_opencv_samples_fd_DetectionBasedTracker_nativeStart");
try try
{ {
((DetectorAgregator*)thiz)->tracker->run(); ((DetectionBasedTracker*)thiz)->run();
} }
catch(cv::Exception e) catch(cv::Exception e)
{ {
@ -151,18 +94,16 @@ JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeSt
{ {
LOGD("nativeStart catched unknown exception"); LOGD("nativeStart catched unknown exception");
jclass je = jenv->FindClass("java/lang/Exception"); jclass je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, "Unknown exception in JNI code {Java_org_opencv_samples_fd_DetectionBasedTracker_nativeStart(...)}"); jenv->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1VideoCapture__()}");
} }
} }
JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeStop JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeStop
(JNIEnv * jenv, jclass, jlong thiz) (JNIEnv * jenv, jclass, jlong thiz)
{ {
LOGD("Java_org_opencv_samples_fd_DetectionBasedTracker_nativeStop");
try try
{ {
((DetectorAgregator*)thiz)->tracker->stop(); ((DetectionBasedTracker*)thiz)->stop();
} }
catch(cv::Exception e) catch(cv::Exception e)
{ {
@ -176,22 +117,23 @@ JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeSt
{ {
LOGD("nativeStop catched unknown exception"); LOGD("nativeStop catched unknown exception");
jclass je = jenv->FindClass("java/lang/Exception"); jclass je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, "Unknown exception in JNI code {Java_org_opencv_samples_fd_DetectionBasedTracker_nativeStop(...)}"); jenv->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1VideoCapture__()}");
} }
} }
JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeSetFaceSize JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeSetFaceSize
(JNIEnv * jenv, jclass, jlong thiz, jint faceSize) (JNIEnv * jenv, jclass, jlong thiz, jint faceSize)
{ {
LOGD("Java_org_opencv_samples_fd_DetectionBasedTracker_nativeSetFaceSize -- BEGIN");
try try
{ {
if (faceSize > 0) if (faceSize > 0)
{ {
((DetectorAgregator*)thiz)->mainDetector->setMinObjectSize(Size(faceSize, faceSize)); DetectionBasedTracker::Parameters DetectorParams = \
//((DetectorAgregator*)thiz)->trackingDetector->setMinObjectSize(Size(faceSize, faceSize)); ((DetectionBasedTracker*)thiz)->getParameters();
DetectorParams.minObjectSize = faceSize;
((DetectionBasedTracker*)thiz)->setParameters(DetectorParams);
} }
} }
catch(cv::Exception e) catch(cv::Exception e)
{ {
@ -205,23 +147,20 @@ JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeSe
{ {
LOGD("nativeSetFaceSize catched unknown exception"); LOGD("nativeSetFaceSize catched unknown exception");
jclass je = jenv->FindClass("java/lang/Exception"); jclass je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, "Unknown exception in JNI code {Java_org_opencv_samples_fd_DetectionBasedTracker_nativeSetFaceSize(...)}"); jenv->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1VideoCapture__()}");
} }
LOGD("Java_org_opencv_samples_fd_DetectionBasedTracker_nativeSetFaceSize -- END");
} }
JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeDetect JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeDetect
(JNIEnv * jenv, jclass, jlong thiz, jlong imageGray, jlong faces) (JNIEnv * jenv, jclass, jlong thiz, jlong imageGray, jlong faces)
{ {
LOGD("Java_org_opencv_samples_fd_DetectionBasedTracker_nativeDetect");
try try
{ {
vector<Rect> RectFaces; vector<Rect> RectFaces;
((DetectorAgregator*)thiz)->tracker->process(*((Mat*)imageGray)); ((DetectionBasedTracker*)thiz)->process(*((Mat*)imageGray));
((DetectorAgregator*)thiz)->tracker->getObjects(RectFaces); ((DetectionBasedTracker*)thiz)->getObjects(RectFaces);
*((Mat*)faces) = Mat(RectFaces, true); vector_Rect_to_Mat(RectFaces, *((Mat*)faces));
} }
catch(cv::Exception e) catch(cv::Exception e)
{ {
@ -235,7 +174,6 @@ JNIEXPORT void JNICALL Java_org_opencv_samples_fd_DetectionBasedTracker_nativeDe
{ {
LOGD("nativeDetect catched unknown exception"); LOGD("nativeDetect catched unknown exception");
jclass je = jenv->FindClass("java/lang/Exception"); jclass je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, "Unknown exception in JNI code {Java_org_opencv_samples_fd_DetectionBasedTracker_nativeDetect(...)}"); jenv->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1VideoCapture__()}");
} }
LOGD("Java_org_opencv_samples_fd_DetectionBasedTracker_nativeDetect END");
} }

View File

@ -3,7 +3,7 @@
# #
# ---------------------------------------------------------------------------- # ----------------------------------------------------------------------------
SET(OPENCV_CPP_SAMPLES_REQUIRED_DEPS opencv_core_vision_api opencv_core opencv_flann opencv_imgproc SET(OPENCV_CPP_SAMPLES_REQUIRED_DEPS opencv_core opencv_flann opencv_imgproc
opencv_highgui opencv_ml opencv_video opencv_objdetect opencv_photo opencv_nonfree opencv_highgui opencv_ml opencv_video opencv_objdetect opencv_photo opencv_nonfree
opencv_features2d opencv_calib3d opencv_legacy opencv_contrib opencv_stitching opencv_videostab) opencv_features2d opencv_calib3d opencv_legacy opencv_contrib opencv_stitching opencv_videostab)

View File

@ -1,55 +0,0 @@
#include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar)
#include <opencv2/highgui/highgui.hpp> // OpenCV window I/O
#include <opencv2/core_vision_api/tracker.hpp>
#include <stdio.h>
#include <string>
#include <vector>
using namespace std;
using namespace cv;
const string WindowName = "Face Detection example";
const Scalar RectColor = CV_RGB(0,255,0);
int main()
{
namedWindow(WindowName);
cv::moveWindow(WindowName, 100, 100);
Mat Viewport;
Mat ReferenceFrame = imread("board.jpg");
if (ReferenceFrame.empty())
{
printf("Error: Cannot load input image\n");
return 1;
}
cv::Ptr<nv::Tracker> tracker = nv::Algorithm::create<nv::Tracker>("nv::Tracker::OpticalFlow");
tracker->initialize();
// First frame for initialization
tracker->feed(ReferenceFrame);
nv::Tracker::TrackedObjectHandler obj = tracker->addObject(cv::Rect(100,100, 200, 200));
while(true)
{
tracker->feed(ReferenceFrame);
if (obj->getStatus() == nv::Tracker::LOST_STATUS)
break;
cv::Rect currentLocation = obj->getLocation();
ReferenceFrame.copyTo(Viewport);
rectangle(Viewport, currentLocation, RectColor);
imshow(WindowName, Viewport);
if (cvWaitKey(30) >= 0) break;
}
return 0;
}

View File

@ -1,104 +0,0 @@
#if 0 //defined(__linux__) || defined(LINUX) || defined(__APPLE__) || defined(ANDROID)
#include <opencv2/imgproc/imgproc.hpp> // Gaussian Blur
#include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar)
#include <opencv2/highgui/highgui.hpp> // OpenCV window I/O
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/contrib/detection_based_tracker.hpp>
#include <stdio.h>
#include <string>
#include <vector>
using namespace std;
using namespace cv;
const string WindowName = "Face Detection example";
class CascadeDetectorAdapter: public DetectionBasedTracker::IDetector
{
public:
CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector):
IDetector(),
Detector(detector)
{
CV_Assert(!detector.empty());
}
void detect(const cv::Mat &Image, std::vector<cv::Rect> &objects)
{
Detector->detectMultiScale(Image, objects, scaleFactor, minNeighbours, 0, minObjSize, maxObjSize);
}
virtual ~CascadeDetectorAdapter()
{}
private:
CascadeDetectorAdapter();
cv::Ptr<cv::CascadeClassifier> Detector;
};
int main(int argc, char* argv[])
{
namedWindow(WindowName);
VideoCapture VideoStream(0);
if (!VideoStream.isOpened())
{
printf("Error: Cannot open video stream from camera\n");
return 1;
}
std::string cascadeFrontalfilename = "../../data/lbpcascades/lbpcascade_frontalface.xml";
cv::Ptr<cv::CascadeClassifier> cascade = new cv::CascadeClassifier(cascadeFrontalfilename);
cv::Ptr<DetectionBasedTracker::IDetector> MainDetector = new CascadeDetectorAdapter(cascade);
cascade = new cv::CascadeClassifier(cascadeFrontalfilename);
cv::Ptr<DetectionBasedTracker::IDetector> TrackingDetector = new CascadeDetectorAdapter(cascade);
DetectionBasedTracker::Parameters params;
DetectionBasedTracker Detector(MainDetector, TrackingDetector, params);
if (!Detector.run())
{
printf("Error: Detector initialization failed\n");
return 2;
}
Mat ReferenceFrame;
Mat GrayFrame;
vector<Rect> Faces;
while(true)
{
VideoStream >> ReferenceFrame;
cvtColor(ReferenceFrame, GrayFrame, COLOR_RGB2GRAY);
Detector.process(GrayFrame);
Detector.getObjects(Faces);
for (size_t i = 0; i < Faces.size(); i++)
{
rectangle(ReferenceFrame, Faces[i], CV_RGB(0,255,0));
}
imshow(WindowName, ReferenceFrame);
if (cvWaitKey(30) >= 0) break;
}
Detector.stop();
return 0;
}
#else
#include <stdio.h>
int main()
{
printf("This sample works for UNIX or ANDROID only\n");
return 0;
}
#endif

View File

@ -43,6 +43,8 @@
#define LOGE(...) do{} while(0) #define LOGE(...) do{} while(0)
#endif #endif
using namespace cv; using namespace cv;
using namespace std; using namespace std;
@ -61,31 +63,9 @@ static void usage()
LOGE0("\t (e.g.\"opencv/data/lbpcascades/lbpcascade_frontalface.xml\" "); LOGE0("\t (e.g.\"opencv/data/lbpcascades/lbpcascade_frontalface.xml\" ");
} }
class CascadeDetectorAdapter: public DetectionBasedTracker::IDetector
{
public:
CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector):
Detector(detector)
{
CV_Assert(!detector.empty());
}
void detect(const cv::Mat &Image, std::vector<cv::Rect> &objects)
{
Detector->detectMultiScale(Image, objects, 1.1, 3, 0, minObjSize, maxObjSize);
}
virtual ~CascadeDetectorAdapter()
{}
private:
CascadeDetectorAdapter();
cv::Ptr<cv::CascadeClassifier> Detector;
};
static int test_FaceDetector(int argc, char *argv[]) static int test_FaceDetector(int argc, char *argv[])
{ {
if (argc < 4) if (argc < 4) {
{
usage(); usage();
return -1; return -1;
} }
@ -100,14 +80,12 @@ static int test_FaceDetector(int argc, char *argv[])
vector<Mat> images; vector<Mat> images;
{ {
char filename[256]; char filename[256];
for(int n=1; ; n++) for(int n=1; ; n++) {
{
snprintf(filename, sizeof(filename), filepattern, n); snprintf(filename, sizeof(filename), filepattern, n);
LOGD("filename='%s'", filename); LOGD("filename='%s'", filename);
Mat m0; Mat m0;
m0=imread(filename); m0=imread(filename);
if (m0.empty()) if (m0.empty()) {
{
LOGI0("Cannot read the file --- break"); LOGI0("Cannot read the file --- break");
break; break;
} }
@ -116,15 +94,10 @@ static int test_FaceDetector(int argc, char *argv[])
LOGD("read %d images", (int)images.size()); LOGD("read %d images", (int)images.size());
} }
std::string cascadeFrontalfilename=cascadefile;
cv::Ptr<cv::CascadeClassifier> cascade = new cv::CascadeClassifier(cascadeFrontalfilename);
cv::Ptr<DetectionBasedTracker::IDetector> MainDetector = new CascadeDetectorAdapter(cascade);
cascade = new cv::CascadeClassifier(cascadeFrontalfilename);
cv::Ptr<DetectionBasedTracker::IDetector> TrackingDetector = new CascadeDetectorAdapter(cascade);
DetectionBasedTracker::Parameters params; DetectionBasedTracker::Parameters params;
DetectionBasedTracker fd(MainDetector, TrackingDetector, params); std::string cascadeFrontalfilename=cascadefile;
DetectionBasedTracker fd(cascadeFrontalfilename, params);
fd.run(); fd.run();
@ -135,13 +108,12 @@ static int test_FaceDetector(int argc, char *argv[])
double freq=getTickFrequency(); double freq=getTickFrequency();
int num_images=images.size(); int num_images=images.size();
for(int n=1; n <= num_images; n++) for(int n=1; n <= num_images; n++) {
{
int64 tcur=getTickCount(); int64 tcur=getTickCount();
int64 dt=tcur-tprev; int64 dt=tcur-tprev;
tprev=tcur; tprev=tcur;
double t_ms=((double)dt)/freq * 1000.0; double t_ms=((double)dt)/freq * 1000.0;
LOGD("\n\nSTEP n=%d from prev step %f ms\n", n, t_ms); LOGD("\n\nSTEP n=%d from prev step %f ms\n\n", n, t_ms);
m=images[n-1]; m=images[n-1];
CV_Assert(! m.empty()); CV_Assert(! m.empty());
cvtColor(m, gray, CV_BGR2GRAY); cvtColor(m, gray, CV_BGR2GRAY);
@ -151,8 +123,11 @@ static int test_FaceDetector(int argc, char *argv[])
vector<Rect> result; vector<Rect> result;
fd.getObjects(result); fd.getObjects(result);
for(size_t i=0; i < result.size(); i++)
{
for(size_t i=0; i < result.size(); i++) {
Rect r=result[i]; Rect r=result[i];
CV_Assert(r.area() > 0); CV_Assert(r.area() > 0);
Point tl=r.tl(); Point tl=r.tl();
@ -161,21 +136,23 @@ static int test_FaceDetector(int argc, char *argv[])
rectangle(m, tl, br, color, 3); rectangle(m, tl, br, color, 3);
} }
} }
char outfilename[256];
for(int n=1; n <= num_images; n++)
{ {
char outfilename[256];
for(int n=1; n <= num_images; n++) {
snprintf(outfilename, sizeof(outfilename), outfilepattern, n); snprintf(outfilename, sizeof(outfilename), outfilepattern, n);
LOGD("outfilename='%s'", outfilename); LOGD("outfilename='%s'", outfilename);
m=images[n-1]; m=images[n-1];
imwrite(outfilename, m); imwrite(outfilename, m);
} }
}
fd.stop(); fd.stop();
return 0; return 0;
} }
int main(int argc, char *argv[]) int main(int argc, char *argv[])
{ {
return test_FaceDetector(argc, argv); return test_FaceDetector(argc, argv);