Merged the trunk r8589:8653 - all changes related to build warnings
This commit is contained in:
@@ -53,13 +53,9 @@
|
||||
#include "assert.h"
|
||||
#include "math.h"
|
||||
|
||||
#if _MSC_VER >= 1400
|
||||
#pragma warning(disable: 4512) // suppress "assignment operator could not be generated"
|
||||
#endif
|
||||
|
||||
// J.S. Beis and D.G. Lowe. Shape indexing using approximate nearest-neighbor search
|
||||
// in highdimensional spaces. In Proc. IEEE Conf. Comp. Vision Patt. Recog.,
|
||||
// pages 1000--1006, 1997. http://citeseer.ist.psu.edu/beis97shape.html
|
||||
// J.S. Beis and D.G. Lowe. Shape indexing using approximate nearest-neighbor search
|
||||
// in highdimensional spaces. In Proc. IEEE Conf. Comp. Vision Patt. Recog.,
|
||||
// pages 1000--1006, 1997. http://citeseer.ist.psu.edu/beis97shape.html
|
||||
#undef __deref
|
||||
#undef __valuetype
|
||||
|
||||
@@ -72,23 +68,23 @@ public:
|
||||
|
||||
private:
|
||||
struct node {
|
||||
int dim; // split dimension; >=0 for nodes, -1 for leaves
|
||||
__valuetype value; // if leaf, value of leaf
|
||||
int left, right; // node indices of left and right branches
|
||||
scalar_type boundary; // left if deref(value,dim)<=boundary, otherwise right
|
||||
int dim; // split dimension; >=0 for nodes, -1 for leaves
|
||||
__valuetype value; // if leaf, value of leaf
|
||||
int left, right; // node indices of left and right branches
|
||||
scalar_type boundary; // left if deref(value,dim)<=boundary, otherwise right
|
||||
};
|
||||
typedef std::vector < node > node_array;
|
||||
|
||||
__deref deref; // requires operator() (__valuetype lhs,int dim)
|
||||
__deref deref; // requires operator() (__valuetype lhs,int dim)
|
||||
|
||||
node_array nodes; // node storage
|
||||
int point_dim; // dimension of points (the k in kd-tree)
|
||||
int root_node; // index of root node, -1 if empty tree
|
||||
node_array nodes; // node storage
|
||||
int point_dim; // dimension of points (the k in kd-tree)
|
||||
int root_node; // index of root node, -1 if empty tree
|
||||
|
||||
// for given set of point indices, compute dimension of highest variance
|
||||
template < class __instype, class __valuector >
|
||||
int dimension_of_highest_variance(__instype * first, __instype * last,
|
||||
__valuector ctor) {
|
||||
__valuector ctor) {
|
||||
assert(last - first > 0);
|
||||
|
||||
accum_type maxvar = -std::numeric_limits < accum_type >::max();
|
||||
@@ -96,32 +92,32 @@ private:
|
||||
for (int j = 0; j < point_dim; ++j) {
|
||||
accum_type mean = 0;
|
||||
for (__instype * k = first; k < last; ++k)
|
||||
mean += deref(ctor(*k), j);
|
||||
mean += deref(ctor(*k), j);
|
||||
mean /= last - first;
|
||||
accum_type var = 0;
|
||||
for (__instype * k = first; k < last; ++k) {
|
||||
accum_type diff = accum_type(deref(ctor(*k), j)) - mean;
|
||||
var += diff * diff;
|
||||
accum_type diff = accum_type(deref(ctor(*k), j)) - mean;
|
||||
var += diff * diff;
|
||||
}
|
||||
var /= last - first;
|
||||
|
||||
assert(maxj != -1 || var >= maxvar);
|
||||
|
||||
if (var >= maxvar) {
|
||||
maxvar = var;
|
||||
maxj = j;
|
||||
maxvar = var;
|
||||
maxj = j;
|
||||
}
|
||||
}
|
||||
|
||||
return maxj;
|
||||
}
|
||||
|
||||
// given point indices and dimension, find index of median; (almost) modifies [first,last)
|
||||
// given point indices and dimension, find index of median; (almost) modifies [first,last)
|
||||
// such that points_in[first,median]<=point[median], points_in(median,last)>point[median].
|
||||
// implemented as partial quicksort; expected linear perf.
|
||||
template < class __instype, class __valuector >
|
||||
__instype * median_partition(__instype * first, __instype * last,
|
||||
int dim, __valuector ctor) {
|
||||
int dim, __valuector ctor) {
|
||||
assert(last - first > 0);
|
||||
__instype *k = first + (last - first) / 2;
|
||||
median_partition(first, last, k, dim, ctor);
|
||||
@@ -140,17 +136,19 @@ private:
|
||||
bool operator() (const __instype & lhs) const {
|
||||
return deref(ctor(lhs), dim) <= deref(ctor(pivot), dim);
|
||||
}
|
||||
private:
|
||||
median_pr& operator=(const median_pr&);
|
||||
};
|
||||
|
||||
template < class __instype, class __valuector >
|
||||
void median_partition(__instype * first, __instype * last,
|
||||
__instype * k, int dim, __valuector ctor) {
|
||||
void median_partition(__instype * first, __instype * last,
|
||||
__instype * k, int dim, __valuector ctor) {
|
||||
int pivot = (int)((last - first) / 2);
|
||||
|
||||
std::swap(first[pivot], last[-1]);
|
||||
__instype *middle = std::partition(first, last - 1,
|
||||
median_pr < __instype, __valuector >
|
||||
(last[-1], dim, deref, ctor));
|
||||
median_pr < __instype, __valuector >
|
||||
(last[-1], dim, deref, ctor));
|
||||
std::swap(*middle, last[-1]);
|
||||
|
||||
if (middle < k)
|
||||
@@ -170,36 +168,36 @@ private:
|
||||
__instype *median = median_partition(first, last, dim, ctor);
|
||||
|
||||
__instype *split = median;
|
||||
for (; split != last && deref(ctor(*split), dim) ==
|
||||
deref(ctor(*median), dim); ++split);
|
||||
for (; split != last && deref(ctor(*split), dim) ==
|
||||
deref(ctor(*median), dim); ++split);
|
||||
|
||||
if (split == last) { // leaf
|
||||
int nexti = -1;
|
||||
for (--split; split >= first; --split) {
|
||||
int i = (int)nodes.size();
|
||||
node & n = *nodes.insert(nodes.end(), node());
|
||||
n.dim = -1;
|
||||
n.value = ctor(*split);
|
||||
n.left = -1;
|
||||
n.right = nexti;
|
||||
nexti = i;
|
||||
}
|
||||
int nexti = -1;
|
||||
for (--split; split >= first; --split) {
|
||||
int i = (int)nodes.size();
|
||||
node & n = *nodes.insert(nodes.end(), node());
|
||||
n.dim = -1;
|
||||
n.value = ctor(*split);
|
||||
n.left = -1;
|
||||
n.right = nexti;
|
||||
nexti = i;
|
||||
}
|
||||
|
||||
return nexti;
|
||||
return nexti;
|
||||
} else { // node
|
||||
int i = (int)nodes.size();
|
||||
// note that recursive insert may invalidate this ref
|
||||
node & n = *nodes.insert(nodes.end(), node());
|
||||
int i = (int)nodes.size();
|
||||
// note that recursive insert may invalidate this ref
|
||||
node & n = *nodes.insert(nodes.end(), node());
|
||||
|
||||
n.dim = dim;
|
||||
n.boundary = deref(ctor(*median), dim);
|
||||
n.dim = dim;
|
||||
n.boundary = deref(ctor(*median), dim);
|
||||
|
||||
int left = insert(first, split, ctor);
|
||||
nodes[i].left = left;
|
||||
int right = insert(split, last, ctor);
|
||||
nodes[i].right = right;
|
||||
int left = insert(first, split, ctor);
|
||||
nodes[i].left = left;
|
||||
int right = insert(split, last, ctor);
|
||||
nodes[i].right = right;
|
||||
|
||||
return i;
|
||||
return i;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -214,21 +212,21 @@ private:
|
||||
|
||||
if (n.dim >= 0) { // node
|
||||
if (deref(p, n.dim) <= n.boundary) // left
|
||||
r = remove(&n.left, p);
|
||||
r = remove(&n.left, p);
|
||||
else // right
|
||||
r = remove(&n.right, p);
|
||||
r = remove(&n.right, p);
|
||||
|
||||
// if terminal, remove this node
|
||||
if (n.left == -1 && n.right == -1)
|
||||
*i = -1;
|
||||
*i = -1;
|
||||
|
||||
return r;
|
||||
} else { // leaf
|
||||
if (n.value == p) {
|
||||
*i = n.right;
|
||||
return true;
|
||||
*i = n.right;
|
||||
return true;
|
||||
} else
|
||||
return remove(&n.right, p);
|
||||
return remove(&n.right, p);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -245,14 +243,14 @@ public:
|
||||
}
|
||||
// given points, initialize a balanced tree
|
||||
CvKDTree(__valuetype * first, __valuetype * last, int _point_dim,
|
||||
__deref _deref = __deref())
|
||||
__deref _deref = __deref())
|
||||
: deref(_deref) {
|
||||
set_data(first, last, _point_dim, identity_ctor());
|
||||
}
|
||||
// given points, initialize a balanced tree
|
||||
template < class __instype, class __valuector >
|
||||
CvKDTree(__instype * first, __instype * last, int _point_dim,
|
||||
__valuector ctor, __deref _deref = __deref())
|
||||
__valuector ctor, __deref _deref = __deref())
|
||||
: deref(_deref) {
|
||||
set_data(first, last, _point_dim, ctor);
|
||||
}
|
||||
@@ -266,7 +264,7 @@ public:
|
||||
}
|
||||
template < class __instype, class __valuector >
|
||||
void set_data(__instype * first, __instype * last, int _point_dim,
|
||||
__valuector ctor) {
|
||||
__valuector ctor) {
|
||||
point_dim = _point_dim;
|
||||
nodes.clear();
|
||||
nodes.reserve(last - first);
|
||||
@@ -292,9 +290,9 @@ public:
|
||||
std::cout << " ";
|
||||
const node & n = nodes[i];
|
||||
if (n.dim >= 0) {
|
||||
std::cout << "node " << i << ", left " << nodes[i].left << ", right " <<
|
||||
nodes[i].right << ", dim " << nodes[i].dim << ", boundary " <<
|
||||
nodes[i].boundary << std::endl;
|
||||
std::cout << "node " << i << ", left " << nodes[i].left << ", right " <<
|
||||
nodes[i].right << ", dim " << nodes[i].dim << ", boundary " <<
|
||||
nodes[i].boundary << std::endl;
|
||||
print(n.left, indent + 3);
|
||||
print(n.right, indent + 3);
|
||||
} else
|
||||
@@ -304,9 +302,9 @@ public:
|
||||
////////////////////////////////////////////////////////////////////////////////////////
|
||||
// bbf search
|
||||
public:
|
||||
struct bbf_nn { // info on found neighbors (approx k nearest)
|
||||
const __valuetype *p; // nearest neighbor
|
||||
accum_type dist; // distance from d to query point
|
||||
struct bbf_nn { // info on found neighbors (approx k nearest)
|
||||
const __valuetype *p; // nearest neighbor
|
||||
accum_type dist; // distance from d to query point
|
||||
bbf_nn(const __valuetype & _p, accum_type _dist)
|
||||
: p(&_p), dist(_dist) {
|
||||
}
|
||||
@@ -316,9 +314,9 @@ public:
|
||||
};
|
||||
typedef std::vector < bbf_nn > bbf_nn_pqueue;
|
||||
private:
|
||||
struct bbf_node { // info on branches not taken
|
||||
int node; // corresponding node
|
||||
accum_type dist; // minimum distance from bounds to query point
|
||||
struct bbf_node { // info on branches not taken
|
||||
int node; // corresponding node
|
||||
accum_type dist; // minimum distance from bounds to query point
|
||||
bbf_node(int _node, accum_type _dist)
|
||||
: node(_node), dist(_dist) {
|
||||
}
|
||||
@@ -346,10 +344,10 @@ private:
|
||||
int bbf_branch(int i, const __desctype * d, bbf_pqueue & pq) const {
|
||||
const node & n = nodes[i];
|
||||
// push bbf_node with bounds of alternate branch, then branch
|
||||
if (d[n.dim] <= n.boundary) { // left
|
||||
if (d[n.dim] <= n.boundary) { // left
|
||||
pq_alternate(n.right, pq, n.boundary - d[n.dim]);
|
||||
return n.left;
|
||||
} else { // right
|
||||
} else { // right
|
||||
pq_alternate(n.left, pq, d[n.dim] - n.boundary);
|
||||
return n.right;
|
||||
}
|
||||
@@ -366,11 +364,11 @@ private:
|
||||
}
|
||||
|
||||
// called per candidate nearest neighbor; constructs new bbf_nn for
|
||||
// candidate and adds it to priority queue of all candidates; if
|
||||
// candidate and adds it to priority queue of all candidates; if
|
||||
// queue len exceeds k, drops the point furthest from query point d.
|
||||
template < class __desctype >
|
||||
void bbf_new_nn(bbf_nn_pqueue & nn_pq, int k,
|
||||
const __desctype * d, const __valuetype & p) const {
|
||||
void bbf_new_nn(bbf_nn_pqueue & nn_pq, int k,
|
||||
const __desctype * d, const __valuetype & p) const {
|
||||
bbf_nn nn(p, distance(d, p));
|
||||
if ((int) nn_pq.size() < k) {
|
||||
nn_pq.push_back(nn);
|
||||
@@ -384,14 +382,14 @@ private:
|
||||
}
|
||||
|
||||
public:
|
||||
// finds (with high probability) the k nearest neighbors of d,
|
||||
// finds (with high probability) the k nearest neighbors of d,
|
||||
// searching at most emax leaves/bins.
|
||||
// ret_nn_pq is an array containing the (at most) k nearest neighbors
|
||||
// ret_nn_pq is an array containing the (at most) k nearest neighbors
|
||||
// (see bbf_nn structure def above).
|
||||
template < class __desctype >
|
||||
int find_nn_bbf(const __desctype * d,
|
||||
int k, int emax,
|
||||
bbf_nn_pqueue & ret_nn_pq) const {
|
||||
int find_nn_bbf(const __desctype * d,
|
||||
int k, int emax,
|
||||
bbf_nn_pqueue & ret_nn_pq) const {
|
||||
assert(k > 0);
|
||||
ret_nn_pq.clear();
|
||||
|
||||
@@ -411,17 +409,17 @@ public:
|
||||
|
||||
int i;
|
||||
for (i = bbf.node;
|
||||
i != -1 && nodes[i].dim >= 0;
|
||||
i = bbf_branch(i, d, tmp_pq));
|
||||
i != -1 && nodes[i].dim >= 0;
|
||||
i = bbf_branch(i, d, tmp_pq));
|
||||
|
||||
if (i != -1) {
|
||||
|
||||
// add points in leaf/bin to ret_nn_pq
|
||||
do {
|
||||
bbf_new_nn(ret_nn_pq, k, d, nodes[i].value);
|
||||
} while (-1 != (i = nodes[i].right));
|
||||
// add points in leaf/bin to ret_nn_pq
|
||||
do {
|
||||
bbf_new_nn(ret_nn_pq, k, d, nodes[i].value);
|
||||
} while (-1 != (i = nodes[i].right));
|
||||
|
||||
--emax;
|
||||
--emax;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -433,27 +431,27 @@ public:
|
||||
// orthogonal range search
|
||||
private:
|
||||
void find_ortho_range(int i, scalar_type * bounds_min,
|
||||
scalar_type * bounds_max,
|
||||
std::vector < __valuetype > &inbounds) const {
|
||||
scalar_type * bounds_max,
|
||||
std::vector < __valuetype > &inbounds) const {
|
||||
if (i == -1)
|
||||
return;
|
||||
const node & n = nodes[i];
|
||||
if (n.dim >= 0) { // node
|
||||
if (bounds_min[n.dim] <= n.boundary)
|
||||
find_ortho_range(n.left, bounds_min, bounds_max, inbounds);
|
||||
find_ortho_range(n.left, bounds_min, bounds_max, inbounds);
|
||||
if (bounds_max[n.dim] > n.boundary)
|
||||
find_ortho_range(n.right, bounds_min, bounds_max, inbounds);
|
||||
find_ortho_range(n.right, bounds_min, bounds_max, inbounds);
|
||||
} else { // leaf
|
||||
do {
|
||||
inbounds.push_back(nodes[i].value);
|
||||
inbounds.push_back(nodes[i].value);
|
||||
} while (-1 != (i = nodes[i].right));
|
||||
}
|
||||
}
|
||||
public:
|
||||
// return all points that lie within the given bounds; inbounds is cleared
|
||||
int find_ortho_range(scalar_type * bounds_min,
|
||||
scalar_type * bounds_max,
|
||||
std::vector < __valuetype > &inbounds) const {
|
||||
scalar_type * bounds_max,
|
||||
std::vector < __valuetype > &inbounds) const {
|
||||
inbounds.clear();
|
||||
find_ortho_range(root_node, bounds_min, bounds_max, inbounds);
|
||||
return (int)inbounds.size();
|
||||
|
||||
Reference in New Issue
Block a user