improved tree_engine.cpp sample (added train file data specification; print sorted variable importance table)
This commit is contained in:
parent
ce474db8eb
commit
bbdd0aecbd
@ -1,5 +1,7 @@
|
|||||||
#include "opencv2/ml/ml.hpp"
|
#include "opencv2/ml/ml.hpp"
|
||||||
|
#include "opencv2/core/core_c.h"
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
|
#include <map>
|
||||||
|
|
||||||
void help()
|
void help()
|
||||||
{
|
{
|
||||||
@ -10,41 +12,81 @@ void help()
|
|||||||
"CvRTrees rtrees;\n"
|
"CvRTrees rtrees;\n"
|
||||||
"CvERTrees ertrees;\n"
|
"CvERTrees ertrees;\n"
|
||||||
"CvGBTrees gbtrees;\n"
|
"CvGBTrees gbtrees;\n"
|
||||||
"Date is hard coded to come from filename = \"../../../opencv/samples/c/waveform.data\";\n"
|
"Call:\n\t./tree_engine [-r <response_column>] [-c] <csv filename>\n"
|
||||||
"Or can come from filename = \"../../../opencv/samples/c/waveform.data\";\n"
|
"where -r <response_column> specified the 0-based index of the response (0 by default)\n"
|
||||||
"Call:\n"
|
"-c specifies that the response is categorical (it's ordered by default) and\n"
|
||||||
"./tree_engine\n\n");
|
"<csv filename> is the name of training data file in comma-separated value format\n\n");
|
||||||
}
|
}
|
||||||
void print_result(float train_err, float test_err, const CvMat* var_imp)
|
|
||||||
|
|
||||||
|
int count_classes(CvMLData& data)
|
||||||
|
{
|
||||||
|
cv::Mat r(data.get_responses());
|
||||||
|
std::map<int, int> rmap;
|
||||||
|
int i, n = (int)r.total();
|
||||||
|
for( i = 0; i < n; i++ )
|
||||||
|
{
|
||||||
|
float val = r.at<float>(i);
|
||||||
|
int ival = cvRound(val);
|
||||||
|
if( ival != val )
|
||||||
|
return -1;
|
||||||
|
rmap[ival] = 1;
|
||||||
|
}
|
||||||
|
return rmap.size();
|
||||||
|
}
|
||||||
|
|
||||||
|
void print_result(float train_err, float test_err, const CvMat* _var_imp)
|
||||||
{
|
{
|
||||||
printf( "train error %f\n", train_err );
|
printf( "train error %f\n", train_err );
|
||||||
printf( "test error %f\n\n", test_err );
|
printf( "test error %f\n\n", test_err );
|
||||||
|
|
||||||
if (var_imp)
|
if (_var_imp)
|
||||||
{
|
{
|
||||||
bool is_flt = false;
|
cv::Mat var_imp(_var_imp), sorted_idx;
|
||||||
if ( CV_MAT_TYPE( var_imp->type ) == CV_32FC1)
|
cv::sortIdx(var_imp, sorted_idx, CV_SORT_EVERY_ROW + CV_SORT_DESCENDING);
|
||||||
is_flt = true;
|
|
||||||
printf( "variable impotance\n" );
|
printf( "variable importance:\n" );
|
||||||
for( int i = 0; i < var_imp->cols; i++)
|
int i, n = (int)var_imp.total();
|
||||||
|
int type = var_imp.type();
|
||||||
|
CV_Assert(type == CV_32F || type == CV_64F);
|
||||||
|
|
||||||
|
for( i = 0; i < n; i++)
|
||||||
{
|
{
|
||||||
printf( "%d %f\n", i, is_flt ? var_imp->data.fl[i] : var_imp->data.db[i] );
|
int k = sorted_idx.at<int>(i);
|
||||||
|
printf( "%d\t%f\n", k, type == CV_32F ? var_imp.at<float>(k) : var_imp.at<double>(k));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
printf("\n");
|
printf("\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
int main()
|
int main(int argc, char** argv)
|
||||||
{
|
{
|
||||||
const int train_sample_count = 300;
|
if(argc < 2)
|
||||||
|
{
|
||||||
#define LEPIOTA //Turn on discrete data set
|
help();
|
||||||
#ifdef LEPIOTA //Of course, you might have to set the path here to what's on your machine ...
|
return 0;
|
||||||
const char* filename = "../../opencv/samples/c/agaricus-lepiota.data";
|
}
|
||||||
#else
|
const char* filename = 0;
|
||||||
const char* filename = "../../opencv/samples/c/waveform.data";
|
int response_idx = 0;
|
||||||
#endif
|
bool categorical_response = false;
|
||||||
printf("\n Reading in %s. If it is not found, you may have to change this hard-coded path in tree_engine.cpp\n\n",filename);
|
|
||||||
|
for(int i = 1; i < argc; i++)
|
||||||
|
{
|
||||||
|
if(strcmp(argv[i], "-r") == 0)
|
||||||
|
sscanf(argv[++i], "%d", &response_idx);
|
||||||
|
else if(strcmp(argv[i], "-c") == 0)
|
||||||
|
categorical_response = true;
|
||||||
|
else if(argv[i][0] != '-' )
|
||||||
|
filename = argv[i];
|
||||||
|
else
|
||||||
|
{
|
||||||
|
printf("Error. Invalid option %s\n", argv[i]);
|
||||||
|
help();
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("\nReading in %s...\n\n",filename);
|
||||||
CvDTree dtree;
|
CvDTree dtree;
|
||||||
CvBoost boost;
|
CvBoost boost;
|
||||||
CvRTrees rtrees;
|
CvRTrees rtrees;
|
||||||
@ -53,29 +95,26 @@ int main()
|
|||||||
|
|
||||||
CvMLData data;
|
CvMLData data;
|
||||||
|
|
||||||
CvTrainTestSplit spl( train_sample_count );
|
|
||||||
|
CvTrainTestSplit spl( 0.5f );
|
||||||
|
|
||||||
if ( data.read_csv( filename ) == 0)
|
if ( data.read_csv( filename ) == 0)
|
||||||
{
|
{
|
||||||
|
data.set_response_idx( response_idx );
|
||||||
#ifdef LEPIOTA
|
if(categorical_response)
|
||||||
data.set_response_idx( 0 );
|
data.change_var_type( response_idx, CV_VAR_CATEGORICAL );
|
||||||
#else
|
|
||||||
data.set_response_idx( 21 );
|
|
||||||
data.change_var_type( 21, CV_VAR_CATEGORICAL );
|
|
||||||
#endif
|
|
||||||
|
|
||||||
data.set_train_test_split( &spl );
|
data.set_train_test_split( &spl );
|
||||||
|
|
||||||
printf("======DTREE=====\n");
|
printf("======DTREE=====\n");
|
||||||
dtree.train( &data, CvDTreeParams( 10, 2, 0, false, 16, 0, false, false, 0 ));
|
dtree.train( &data, CvDTreeParams( 10, 2, 0, false, 16, 0, false, false, 0 ));
|
||||||
print_result( dtree.calc_error( &data, CV_TRAIN_ERROR), dtree.calc_error( &data, CV_TEST_ERROR ), dtree.get_var_importance() );
|
print_result( dtree.calc_error( &data, CV_TRAIN_ERROR), dtree.calc_error( &data, CV_TEST_ERROR ), dtree.get_var_importance() );
|
||||||
|
|
||||||
#ifdef LEPIOTA
|
if( categorical_response && count_classes(data) == 2 )
|
||||||
|
{
|
||||||
printf("======BOOST=====\n");
|
printf("======BOOST=====\n");
|
||||||
boost.train( &data, CvBoostParams(CvBoost::DISCRETE, 100, 0.95, 2, false, 0));
|
boost.train( &data, CvBoostParams(CvBoost::DISCRETE, 100, 0.95, 2, false, 0));
|
||||||
print_result( boost.calc_error( &data, CV_TRAIN_ERROR ), boost.calc_error( &data, CV_TEST_ERROR ), 0 ); //doesn't compute importance
|
print_result( boost.calc_error( &data, CV_TRAIN_ERROR ), boost.calc_error( &data, CV_TEST_ERROR ), 0 ); //doesn't compute importance
|
||||||
#endif
|
}
|
||||||
|
|
||||||
printf("======RTREES=====\n");
|
printf("======RTREES=====\n");
|
||||||
rtrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER ));
|
rtrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER ));
|
||||||
|
Loading…
x
Reference in New Issue
Block a user