Preparation for pull request
Additional cleaning for simplex method, removing the parts that are currently unused. Removing developer's notes. Trying to reach production level.
This commit is contained in:
parent
a95650111f
commit
ba537a95db
@ -52,63 +52,6 @@
|
|||||||
|
|
||||||
namespace cv{namespace optim
|
namespace cv{namespace optim
|
||||||
{
|
{
|
||||||
//! generic class for optimization algorithms */
|
|
||||||
class CV_EXPORTS Solver : public Algorithm /* Algorithm is the base OpenCV class */
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
class CV_EXPORTS Function
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
virtual ~Function(){}
|
|
||||||
virtual double calc(InputArray args) const = 0;
|
|
||||||
};
|
|
||||||
class CV_EXPORTS Constraints
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
virtual ~Constraints(){}
|
|
||||||
};
|
|
||||||
|
|
||||||
//! could be reused for all the generic algorithms like downhill simplex. Return value is the maximum value of a function*/
|
|
||||||
virtual double solve(const Function& F,const Constraints& C, OutputArray result) const = 0;
|
|
||||||
|
|
||||||
/*virtual void setTermCriteria(const TermCriteria& criteria) = 0;
|
|
||||||
virtual TermCriteria getTermCriteria() = 0;*/
|
|
||||||
|
|
||||||
// more detailed API to be defined later ...
|
|
||||||
};
|
|
||||||
|
|
||||||
class CV_EXPORTS LPSolver : public Solver
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
class CV_EXPORTS LPFunction:public Solver::Function
|
|
||||||
{
|
|
||||||
Mat z;
|
|
||||||
public:
|
|
||||||
//! Note, that this class is supposed to be immutable, so it's ok to make only a shallow copy of z_in.*/
|
|
||||||
LPFunction(Mat z_in):z(z_in){}
|
|
||||||
~LPFunction(){};
|
|
||||||
const Mat& getz()const{return z;}
|
|
||||||
double calc(InputArray args)const;
|
|
||||||
};
|
|
||||||
|
|
||||||
//!This class represents constraints for linear problem. There are two matrix stored: m-by-n matrix A and n-by-1 column-vector b.
|
|
||||||
//!What this represents is the set of constraints Ax\leq b and x\geq 0. It can be shown that any set of linear constraints can be converted
|
|
||||||
//!this form and **we shall create various constructors for this class that will perform these conversions**.
|
|
||||||
class CV_EXPORTS LPConstraints:public Solver::Constraints
|
|
||||||
{
|
|
||||||
Mat A,b;
|
|
||||||
public:
|
|
||||||
~LPConstraints(){};
|
|
||||||
//! Note, that this class is supposed to be immutable, so it's ok to make only a shallow copy of A_in and b_in.*/
|
|
||||||
LPConstraints(Mat A_in, Mat b_in):A(A_in),b(b_in){}
|
|
||||||
const Mat& getA()const{return A;}
|
|
||||||
const Mat& getb()const{return b;}
|
|
||||||
};
|
|
||||||
|
|
||||||
LPSolver(){}
|
|
||||||
double solve(const Function& F,const Constraints& C, OutputArray result)const;
|
|
||||||
};
|
|
||||||
|
|
||||||
//!the return codes for solveLP() function
|
//!the return codes for solveLP() function
|
||||||
enum
|
enum
|
||||||
{
|
{
|
||||||
|
@ -16,16 +16,6 @@ const void dprintf(const char* format,...){
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
double LPSolver::solve(const Function& F,const Constraints& C, OutputArray result)const{
|
|
||||||
return 0.0;
|
|
||||||
}
|
|
||||||
|
|
||||||
double LPSolver::LPFunction::calc(InputArray args)const{
|
|
||||||
dprintf("call to LPFunction::calc()\n");
|
|
||||||
return 0.0;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void const print_matrix(const Mat& X){
|
void const print_matrix(const Mat& X){
|
||||||
#ifdef ALEX_DEBUG
|
#ifdef ALEX_DEBUG
|
||||||
dprintf("\ttype:%d vs %d,\tsize: %d-on-%d\n",X.type(),CV_64FC1,X.rows,X.cols);
|
dprintf("\ttype:%d vs %d,\tsize: %d-on-%d\n",X.type(),CV_64FC1,X.rows,X.cols);
|
||||||
@ -337,7 +327,3 @@ const inline void swap_columns(Mat_<double>& A,int col1,int col2){
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}}
|
}}
|
||||||
/*FIXME (possible optimizations)
|
|
||||||
* use iterator-style (as in ddc0010e7... commit version of this file)
|
|
||||||
* remove calls to pivot inside the while-loops
|
|
||||||
*/
|
|
||||||
|
@ -112,23 +112,3 @@ TEST(Optim_LpSolver, regression_cycling){
|
|||||||
//ASSERT_EQ(res,1);
|
//ASSERT_EQ(res,1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//TODO
|
|
||||||
// get optimal solution from initial (0,0,...,0) - DONE
|
|
||||||
// milestone: pass first test (wo initial solution) - DONE
|
|
||||||
//
|
|
||||||
// ??how_check_multiple_solutions & pass_test - DONE
|
|
||||||
// Blands_rule - DONE
|
|
||||||
// (assert, assign) - DONE
|
|
||||||
//
|
|
||||||
// (&1tests on cycling)
|
|
||||||
// make_more_clear
|
|
||||||
// wrap in OOP
|
|
||||||
//
|
|
||||||
// non-trivial tests
|
|
||||||
// pull-request
|
|
||||||
//
|
|
||||||
// study hill and other algos
|
|
||||||
//
|
|
||||||
// ??how to get smallest l2 norm
|
|
||||||
// FUTURE: compress&debug-> more_tests(Cormen) -> readNumRecipes-> fast&stable || hill_climbing
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user