initial commit; ml has been refactored; it compiles and the tests run well; some other modules, apps and samples do not compile; to be fixed
This commit is contained in:
@@ -40,131 +40,74 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
typedef struct CvDI
|
||||
namespace cv { namespace ml {
|
||||
|
||||
struct PairDI
|
||||
{
|
||||
double d;
|
||||
int i;
|
||||
} CvDI;
|
||||
};
|
||||
|
||||
static int CV_CDECL
|
||||
icvCmpDI( const void* a, const void* b, void* )
|
||||
struct CmpPairDI
|
||||
{
|
||||
const CvDI* e1 = (const CvDI*) a;
|
||||
const CvDI* e2 = (const CvDI*) b;
|
||||
bool operator ()(const PairDI& e1, const PairDI& e2) const
|
||||
{
|
||||
return (e1.d < e2.d) || (e1.d == e2.d && e1.i < e2.i);
|
||||
}
|
||||
};
|
||||
|
||||
return (e1->d < e2->d) ? -1 : (e1->d > e2->d);
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvCreateTestSet( int type, CvMat** samples,
|
||||
int num_samples,
|
||||
int num_features,
|
||||
CvMat** responses,
|
||||
int num_classes, ... )
|
||||
void createConcentricSpheresTestSet( int num_samples, int num_features, int num_classes,
|
||||
OutputArray _samples, OutputArray _responses)
|
||||
{
|
||||
CvMat* mean = NULL;
|
||||
CvMat* cov = NULL;
|
||||
CvMemStorage* storage = NULL;
|
||||
|
||||
CV_FUNCNAME( "cvCreateTestSet" );
|
||||
|
||||
__BEGIN__;
|
||||
|
||||
if( samples )
|
||||
*samples = NULL;
|
||||
if( responses )
|
||||
*responses = NULL;
|
||||
|
||||
if( type != CV_TS_CONCENTRIC_SPHERES )
|
||||
CV_ERROR( CV_StsBadArg, "Invalid type parameter" );
|
||||
|
||||
if( !samples )
|
||||
CV_ERROR( CV_StsNullPtr, "samples parameter must be not NULL" );
|
||||
|
||||
if( !responses )
|
||||
CV_ERROR( CV_StsNullPtr, "responses parameter must be not NULL" );
|
||||
|
||||
if( num_samples < 1 )
|
||||
CV_ERROR( CV_StsBadArg, "num_samples parameter must be positive" );
|
||||
CV_Error( CV_StsBadArg, "num_samples parameter must be positive" );
|
||||
|
||||
if( num_features < 1 )
|
||||
CV_ERROR( CV_StsBadArg, "num_features parameter must be positive" );
|
||||
CV_Error( CV_StsBadArg, "num_features parameter must be positive" );
|
||||
|
||||
if( num_classes < 1 )
|
||||
CV_ERROR( CV_StsBadArg, "num_classes parameter must be positive" );
|
||||
CV_Error( CV_StsBadArg, "num_classes parameter must be positive" );
|
||||
|
||||
if( type == CV_TS_CONCENTRIC_SPHERES )
|
||||
int i, cur_class;
|
||||
|
||||
_samples.create( num_samples, num_features, CV_32F );
|
||||
_responses.create( 1, num_samples, CV_32S );
|
||||
|
||||
Mat responses = _responses.getMat();
|
||||
|
||||
Mat mean = Mat::zeros(1, num_features, CV_32F);
|
||||
Mat cov = Mat::eye(num_features, num_features, CV_32F);
|
||||
|
||||
// fill the feature values matrix with random numbers drawn from standard normal distribution
|
||||
randMVNormal( mean, cov, num_samples, _samples );
|
||||
Mat samples = _samples.getMat();
|
||||
|
||||
// calculate distances from the origin to the samples and put them
|
||||
// into the sequence along with indices
|
||||
std::vector<PairDI> dis(samples.rows);
|
||||
|
||||
for( i = 0; i < samples.rows; i++ )
|
||||
{
|
||||
CvSeqWriter writer;
|
||||
CvSeqReader reader;
|
||||
CvMat sample;
|
||||
CvDI elem;
|
||||
CvSeq* seq = NULL;
|
||||
int i, cur_class;
|
||||
|
||||
CV_CALL( *samples = cvCreateMat( num_samples, num_features, CV_32FC1 ) );
|
||||
CV_CALL( *responses = cvCreateMat( 1, num_samples, CV_32SC1 ) );
|
||||
CV_CALL( mean = cvCreateMat( 1, num_features, CV_32FC1 ) );
|
||||
CV_CALL( cvSetZero( mean ) );
|
||||
CV_CALL( cov = cvCreateMat( num_features, num_features, CV_32FC1 ) );
|
||||
CV_CALL( cvSetIdentity( cov ) );
|
||||
|
||||
/* fill the feature values matrix with random numbers drawn from standard
|
||||
normal distribution */
|
||||
CV_CALL( cvRandMVNormal( mean, cov, *samples ) );
|
||||
|
||||
/* calculate distances from the origin to the samples and put them
|
||||
into the sequence along with indices */
|
||||
CV_CALL( storage = cvCreateMemStorage() );
|
||||
CV_CALL( cvStartWriteSeq( 0, sizeof( CvSeq ), sizeof( CvDI ), storage, &writer ));
|
||||
for( i = 0; i < (*samples)->rows; ++i )
|
||||
{
|
||||
CV_CALL( cvGetRow( *samples, &sample, i ));
|
||||
elem.i = i;
|
||||
CV_CALL( elem.d = cvNorm( &sample, NULL, CV_L2 ));
|
||||
CV_WRITE_SEQ_ELEM( elem, writer );
|
||||
}
|
||||
CV_CALL( seq = cvEndWriteSeq( &writer ) );
|
||||
|
||||
/* sort the sequence in a distance ascending order */
|
||||
CV_CALL( cvSeqSort( seq, icvCmpDI, NULL ) );
|
||||
|
||||
/* assign class labels */
|
||||
num_classes = MIN( num_samples, num_classes );
|
||||
CV_CALL( cvStartReadSeq( seq, &reader ) );
|
||||
CV_READ_SEQ_ELEM( elem, reader );
|
||||
for( i = 0, cur_class = 0; i < num_samples; ++cur_class )
|
||||
{
|
||||
int last_idx;
|
||||
double max_dst;
|
||||
|
||||
last_idx = num_samples * (cur_class + 1) / num_classes - 1;
|
||||
CV_CALL( max_dst = (*((CvDI*) cvGetSeqElem( seq, last_idx ))).d );
|
||||
max_dst = MAX( max_dst, elem.d );
|
||||
|
||||
for( ; elem.d <= max_dst && i < num_samples; ++i )
|
||||
{
|
||||
CV_MAT_ELEM( **responses, int, 0, elem.i ) = cur_class;
|
||||
if( i < num_samples - 1 )
|
||||
{
|
||||
CV_READ_SEQ_ELEM( elem, reader );
|
||||
}
|
||||
}
|
||||
}
|
||||
PairDI& elem = dis[i];
|
||||
elem.i = i;
|
||||
elem.d = norm(samples.row(i), NORM_L2);
|
||||
}
|
||||
|
||||
__END__;
|
||||
std::sort(dis.begin(), dis.end(), CmpPairDI());
|
||||
|
||||
if( cvGetErrStatus() < 0 )
|
||||
// assign class labels
|
||||
num_classes = std::min( num_samples, num_classes );
|
||||
for( i = 0, cur_class = 0; i < num_samples; ++cur_class )
|
||||
{
|
||||
if( samples )
|
||||
cvReleaseMat( samples );
|
||||
if( responses )
|
||||
cvReleaseMat( responses );
|
||||
int last_idx = num_samples * (cur_class + 1) / num_classes - 1;
|
||||
double max_dst = dis[last_idx].d;
|
||||
max_dst = std::max( max_dst, dis[i].d );
|
||||
|
||||
for( ; i < num_samples && dis[i].d <= max_dst; ++i )
|
||||
responses.at<int>(i) = cur_class;
|
||||
}
|
||||
cvReleaseMat( &mean );
|
||||
cvReleaseMat( &cov );
|
||||
cvReleaseMemStorage( &storage );
|
||||
}
|
||||
|
||||
}}
|
||||
|
||||
/* End of file. */
|
||||
|
||||
Reference in New Issue
Block a user