initial commit; ml has been refactored; it compiles and the tests run well; some other modules, apps and samples do not compile; to be fixed
This commit is contained in:
@@ -38,8 +38,8 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_PRECOMP_H__
|
||||
#define __OPENCV_PRECOMP_H__
|
||||
#ifndef __OPENCV_ML_PRECOMP_HPP__
|
||||
#define __OPENCV_ML_PRECOMP_HPP__
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/ml.hpp"
|
||||
@@ -56,321 +56,217 @@
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <time.h>
|
||||
|
||||
#define ML_IMPL CV_IMPL
|
||||
#define __BEGIN__ __CV_BEGIN__
|
||||
#define __END__ __CV_END__
|
||||
#define EXIT __CV_EXIT__
|
||||
|
||||
#define CV_MAT_ELEM_FLAG( mat, type, comp, vect, tflag ) \
|
||||
(( tflag == CV_ROW_SAMPLE ) \
|
||||
? (CV_MAT_ELEM( mat, type, comp, vect )) \
|
||||
: (CV_MAT_ELEM( mat, type, vect, comp )))
|
||||
|
||||
/* Convert matrix to vector */
|
||||
#define ICV_MAT2VEC( mat, vdata, vstep, num ) \
|
||||
if( MIN( (mat).rows, (mat).cols ) != 1 ) \
|
||||
CV_ERROR( CV_StsBadArg, "" ); \
|
||||
(vdata) = ((mat).data.ptr); \
|
||||
if( (mat).rows == 1 ) \
|
||||
{ \
|
||||
(vstep) = CV_ELEM_SIZE( (mat).type ); \
|
||||
(num) = (mat).cols; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(vstep) = (mat).step; \
|
||||
(num) = (mat).rows; \
|
||||
}
|
||||
|
||||
/* get raw data */
|
||||
#define ICV_RAWDATA( mat, flags, rdata, sstep, cstep, m, n ) \
|
||||
(rdata) = (mat).data.ptr; \
|
||||
if( CV_IS_ROW_SAMPLE( flags ) ) \
|
||||
{ \
|
||||
(sstep) = (mat).step; \
|
||||
(cstep) = CV_ELEM_SIZE( (mat).type ); \
|
||||
(m) = (mat).rows; \
|
||||
(n) = (mat).cols; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(cstep) = (mat).step; \
|
||||
(sstep) = CV_ELEM_SIZE( (mat).type ); \
|
||||
(n) = (mat).rows; \
|
||||
(m) = (mat).cols; \
|
||||
}
|
||||
|
||||
#define ICV_IS_MAT_OF_TYPE( mat, mat_type) \
|
||||
(CV_IS_MAT( mat ) && CV_MAT_TYPE( mat->type ) == (mat_type) && \
|
||||
(mat)->cols > 0 && (mat)->rows > 0)
|
||||
|
||||
/*
|
||||
uchar* data; int sstep, cstep; - trainData->data
|
||||
uchar* classes; int clstep; int ncl;- trainClasses
|
||||
uchar* tmask; int tmstep; int ntm; - typeMask
|
||||
uchar* missed;int msstep, mcstep; -missedMeasurements...
|
||||
int mm, mn; == m,n == size,dim
|
||||
uchar* sidx;int sistep; - sampleIdx
|
||||
uchar* cidx;int cistep; - compIdx
|
||||
int k, l; == n,m == dim,size (length of cidx, sidx)
|
||||
int m, n; == size,dim
|
||||
*/
|
||||
#define ICV_DECLARE_TRAIN_ARGS() \
|
||||
uchar* data; \
|
||||
int sstep, cstep; \
|
||||
uchar* classes; \
|
||||
int clstep; \
|
||||
int ncl; \
|
||||
uchar* tmask; \
|
||||
int tmstep; \
|
||||
int ntm; \
|
||||
uchar* missed; \
|
||||
int msstep, mcstep; \
|
||||
int mm, mn; \
|
||||
uchar* sidx; \
|
||||
int sistep; \
|
||||
uchar* cidx; \
|
||||
int cistep; \
|
||||
int k, l; \
|
||||
int m, n; \
|
||||
\
|
||||
data = classes = tmask = missed = sidx = cidx = NULL; \
|
||||
sstep = cstep = clstep = ncl = tmstep = ntm = msstep = mcstep = mm = mn = 0; \
|
||||
sistep = cistep = k = l = m = n = 0;
|
||||
|
||||
#define ICV_TRAIN_DATA_REQUIRED( param, flags ) \
|
||||
if( !ICV_IS_MAT_OF_TYPE( (param), CV_32FC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ICV_RAWDATA( *(param), (flags), data, sstep, cstep, m, n ); \
|
||||
k = n; \
|
||||
l = m; \
|
||||
}
|
||||
|
||||
#define ICV_TRAIN_CLASSES_REQUIRED( param ) \
|
||||
if( !ICV_IS_MAT_OF_TYPE( (param), CV_32FC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ICV_MAT2VEC( *(param), classes, clstep, ncl ); \
|
||||
if( m != ncl ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Unmatched sizes" ); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define ICV_ARG_NULL( param ) \
|
||||
if( (param) != NULL ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, #param " parameter must be NULL" ); \
|
||||
}
|
||||
|
||||
#define ICV_MISSED_MEASUREMENTS_OPTIONAL( param, flags ) \
|
||||
if( param ) \
|
||||
{ \
|
||||
if( !ICV_IS_MAT_OF_TYPE( param, CV_8UC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ICV_RAWDATA( *(param), (flags), missed, msstep, mcstep, mm, mn ); \
|
||||
if( mm != m || mn != n ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Unmatched sizes" ); \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
#define ICV_COMP_IDX_OPTIONAL( param ) \
|
||||
if( param ) \
|
||||
{ \
|
||||
if( !ICV_IS_MAT_OF_TYPE( param, CV_32SC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ICV_MAT2VEC( *(param), cidx, cistep, k ); \
|
||||
if( k > n ) \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define ICV_SAMPLE_IDX_OPTIONAL( param ) \
|
||||
if( param ) \
|
||||
{ \
|
||||
if( !ICV_IS_MAT_OF_TYPE( param, CV_32SC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ICV_MAT2VEC( *sampleIdx, sidx, sistep, l ); \
|
||||
if( l > m ) \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
}
|
||||
|
||||
/****************************************************************************************/
|
||||
#define ICV_CONVERT_FLOAT_ARRAY_TO_MATRICE( array, matrice ) \
|
||||
{ \
|
||||
CvMat a, b; \
|
||||
int dims = (matrice)->cols; \
|
||||
int nsamples = (matrice)->rows; \
|
||||
int type = CV_MAT_TYPE((matrice)->type); \
|
||||
int i, offset = dims; \
|
||||
\
|
||||
CV_ASSERT( type == CV_32FC1 || type == CV_64FC1 ); \
|
||||
offset *= ((type == CV_32FC1) ? sizeof(float) : sizeof(double));\
|
||||
\
|
||||
b = cvMat( 1, dims, CV_32FC1 ); \
|
||||
cvGetRow( matrice, &a, 0 ); \
|
||||
for( i = 0; i < nsamples; i++, a.data.ptr += offset ) \
|
||||
{ \
|
||||
b.data.fl = (float*)array[i]; \
|
||||
CV_CALL( cvConvert( &b, &a ) ); \
|
||||
} \
|
||||
}
|
||||
#include <vector>
|
||||
|
||||
/****************************************************************************************\
|
||||
* Auxiliary functions declarations *
|
||||
\****************************************************************************************/
|
||||
* Main struct definitions *
|
||||
\****************************************************************************************/
|
||||
|
||||
/* Generates a set of classes centers in quantity <num_of_clusters> that are generated as
|
||||
uniform random vectors in parallelepiped, where <data> is concentrated. Vectors in
|
||||
<data> should have horizontal orientation. If <centers> != NULL, the function doesn't
|
||||
allocate any memory and stores generated centers in <centers>, returns <centers>.
|
||||
If <centers> == NULL, the function allocates memory and creates the matrice. Centers
|
||||
are supposed to be oriented horizontally. */
|
||||
CvMat* icvGenerateRandomClusterCenters( int seed,
|
||||
const CvMat* data,
|
||||
int num_of_clusters,
|
||||
CvMat* centers CV_DEFAULT(0));
|
||||
|
||||
/* Fills the <labels> using <probs> by choosing the maximal probability. Outliers are
|
||||
fixed by <oulier_tresh> and have cluster label (-1). Function also controls that there
|
||||
weren't "empty" clusters by filling empty clusters with the maximal probability vector.
|
||||
If probs_sums != NULL, filles it with the sums of probabilities for each sample (it is
|
||||
useful for normalizing probabilities' matrice of FCM) */
|
||||
void icvFindClusterLabels( const CvMat* probs, float outlier_thresh, float r,
|
||||
const CvMat* labels );
|
||||
|
||||
typedef struct CvSparseVecElem32f
|
||||
{
|
||||
int idx;
|
||||
float val;
|
||||
}
|
||||
CvSparseVecElem32f;
|
||||
|
||||
/* Prepare training data and related parameters */
|
||||
#define CV_TRAIN_STATMODEL_DEFRAGMENT_TRAIN_DATA 1
|
||||
#define CV_TRAIN_STATMODEL_SAMPLES_AS_ROWS 2
|
||||
#define CV_TRAIN_STATMODEL_SAMPLES_AS_COLUMNS 4
|
||||
#define CV_TRAIN_STATMODEL_CATEGORICAL_RESPONSE 8
|
||||
#define CV_TRAIN_STATMODEL_ORDERED_RESPONSE 16
|
||||
#define CV_TRAIN_STATMODEL_RESPONSES_ON_OUTPUT 32
|
||||
#define CV_TRAIN_STATMODEL_ALWAYS_COPY_TRAIN_DATA 64
|
||||
#define CV_TRAIN_STATMODEL_SPARSE_AS_SPARSE 128
|
||||
|
||||
int
|
||||
cvPrepareTrainData( const char* /*funcname*/,
|
||||
const CvMat* train_data, int tflag,
|
||||
const CvMat* responses, int response_type,
|
||||
const CvMat* var_idx,
|
||||
const CvMat* sample_idx,
|
||||
bool always_copy_data,
|
||||
const float*** out_train_samples,
|
||||
int* _sample_count,
|
||||
int* _var_count,
|
||||
int* _var_all,
|
||||
CvMat** out_responses,
|
||||
CvMat** out_response_map,
|
||||
CvMat** out_var_idx,
|
||||
CvMat** out_sample_idx=0 );
|
||||
|
||||
void
|
||||
cvSortSamplesByClasses( const float** samples, const CvMat* classes,
|
||||
int* class_ranges, const uchar** mask CV_DEFAULT(0) );
|
||||
|
||||
void
|
||||
cvCombineResponseMaps (CvMat* _responses,
|
||||
const CvMat* old_response_map,
|
||||
CvMat* new_response_map,
|
||||
CvMat** out_response_map);
|
||||
|
||||
void
|
||||
cvPreparePredictData( const CvArr* sample, int dims_all, const CvMat* comp_idx,
|
||||
int class_count, const CvMat* prob, float** row_sample,
|
||||
int as_sparse CV_DEFAULT(0) );
|
||||
|
||||
/* copies clustering [or batch "predict"] results
|
||||
(labels and/or centers and/or probs) back to the output arrays */
|
||||
void
|
||||
cvWritebackLabels( const CvMat* labels, CvMat* dst_labels,
|
||||
const CvMat* centers, CvMat* dst_centers,
|
||||
const CvMat* probs, CvMat* dst_probs,
|
||||
const CvMat* sample_idx, int samples_all,
|
||||
const CvMat* comp_idx, int dims_all );
|
||||
#define cvWritebackResponses cvWritebackLabels
|
||||
|
||||
#define XML_FIELD_NAME "_name"
|
||||
CvFileNode* icvFileNodeGetChild(CvFileNode* father, const char* name);
|
||||
CvFileNode* icvFileNodeGetChildArrayElem(CvFileNode* father, const char* name,int index);
|
||||
CvFileNode* icvFileNodeGetNext(CvFileNode* n, const char* name);
|
||||
|
||||
|
||||
void cvCheckTrainData( const CvMat* train_data, int tflag,
|
||||
const CvMat* missing_mask,
|
||||
int* var_all, int* sample_all );
|
||||
|
||||
CvMat* cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, bool check_for_duplicates=false );
|
||||
|
||||
CvMat* cvPreprocessVarType( const CvMat* type_mask, const CvMat* var_idx,
|
||||
int var_all, int* response_type );
|
||||
|
||||
CvMat* cvPreprocessOrderedResponses( const CvMat* responses,
|
||||
const CvMat* sample_idx, int sample_all );
|
||||
|
||||
CvMat* cvPreprocessCategoricalResponses( const CvMat* responses,
|
||||
const CvMat* sample_idx, int sample_all,
|
||||
CvMat** out_response_map, CvMat** class_counts=0 );
|
||||
|
||||
const float** cvGetTrainSamples( const CvMat* train_data, int tflag,
|
||||
const CvMat* var_idx, const CvMat* sample_idx,
|
||||
int* _var_count, int* _sample_count,
|
||||
bool always_copy_data=false );
|
||||
/* log(2*PI) */
|
||||
#define CV_LOG2PI (1.8378770664093454835606594728112)
|
||||
|
||||
namespace cv
|
||||
{
|
||||
struct DTreeBestSplitFinder
|
||||
namespace ml
|
||||
{
|
||||
using std::vector;
|
||||
|
||||
#define CV_DTREE_CAT_DIR(idx,subset) \
|
||||
(2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1)
|
||||
|
||||
template<typename _Tp> struct cmp_lt_idx
|
||||
{
|
||||
DTreeBestSplitFinder(){ splitSize = 0, tree = 0; node = 0; }
|
||||
DTreeBestSplitFinder( CvDTree* _tree, CvDTreeNode* _node);
|
||||
DTreeBestSplitFinder( const DTreeBestSplitFinder& finder, Split );
|
||||
virtual ~DTreeBestSplitFinder() {}
|
||||
virtual void operator()(const BlockedRange& range);
|
||||
void join( DTreeBestSplitFinder& rhs );
|
||||
Ptr<CvDTreeSplit> bestSplit;
|
||||
Ptr<CvDTreeSplit> split;
|
||||
int splitSize;
|
||||
CvDTree* tree;
|
||||
CvDTreeNode* node;
|
||||
cmp_lt_idx(const _Tp* _arr) : arr(_arr) {}
|
||||
bool operator ()(int a, int b) const { return arr[a] < arr[b]; }
|
||||
const _Tp* arr;
|
||||
};
|
||||
|
||||
struct ForestTreeBestSplitFinder : DTreeBestSplitFinder
|
||||
template<typename _Tp> struct cmp_lt_ptr
|
||||
{
|
||||
ForestTreeBestSplitFinder() : DTreeBestSplitFinder() {}
|
||||
ForestTreeBestSplitFinder( CvForestTree* _tree, CvDTreeNode* _node );
|
||||
ForestTreeBestSplitFinder( const ForestTreeBestSplitFinder& finder, Split );
|
||||
virtual void operator()(const BlockedRange& range);
|
||||
cmp_lt_ptr() {}
|
||||
bool operator ()(const _Tp* a, const _Tp* b) const { return *a < *b; }
|
||||
};
|
||||
}
|
||||
|
||||
#endif /* __ML_H__ */
|
||||
static inline void setRangeVector(std::vector<int>& vec, int n)
|
||||
{
|
||||
vec.resize(n);
|
||||
for( int i = 0; i < n; i++ )
|
||||
vec[i] = i;
|
||||
}
|
||||
|
||||
static inline void writeTermCrit(FileStorage& fs, const TermCriteria& termCrit)
|
||||
{
|
||||
if( (termCrit.type & TermCriteria::EPS) != 0 )
|
||||
fs << "epsilon" << termCrit.epsilon;
|
||||
if( (termCrit.type & TermCriteria::COUNT) != 0 )
|
||||
fs << "iterations" << termCrit.maxCount;
|
||||
}
|
||||
|
||||
static inline TermCriteria readTermCrit(const FileNode& fn)
|
||||
{
|
||||
TermCriteria termCrit;
|
||||
double epsilon = (double)fn["epsilon"];
|
||||
if( epsilon > 0 )
|
||||
{
|
||||
termCrit.type |= TermCriteria::EPS;
|
||||
termCrit.epsilon = epsilon;
|
||||
}
|
||||
int iters = (double)fn["iterations"];
|
||||
if( iters > 0 )
|
||||
{
|
||||
termCrit.type |= TermCriteria::COUNT;
|
||||
termCrit.maxCount = iters;
|
||||
}
|
||||
return termCrit;
|
||||
}
|
||||
|
||||
class DTreesImpl : public DTrees
|
||||
{
|
||||
public:
|
||||
struct WNode
|
||||
{
|
||||
WNode()
|
||||
{
|
||||
class_idx = sample_count = depth = complexity = 0;
|
||||
parent = left = right = split = defaultDir = -1;
|
||||
Tn = INT_MAX;
|
||||
value = maxlr = alpha = node_risk = tree_risk = tree_error = 0.;
|
||||
}
|
||||
|
||||
int class_idx;
|
||||
int Tn;
|
||||
double value;
|
||||
|
||||
int parent;
|
||||
int left;
|
||||
int right;
|
||||
int defaultDir;
|
||||
|
||||
int split;
|
||||
|
||||
int sample_count;
|
||||
int depth;
|
||||
double maxlr;
|
||||
|
||||
// global pruning data
|
||||
int complexity;
|
||||
double alpha;
|
||||
double node_risk, tree_risk, tree_error;
|
||||
};
|
||||
|
||||
struct WSplit
|
||||
{
|
||||
WSplit()
|
||||
{
|
||||
varIdx = inversed = next = 0;
|
||||
quality = c = 0.f;
|
||||
subsetOfs = -1;
|
||||
}
|
||||
|
||||
int varIdx;
|
||||
int inversed;
|
||||
float quality;
|
||||
int next;
|
||||
float c;
|
||||
int subsetOfs;
|
||||
};
|
||||
|
||||
struct WorkData
|
||||
{
|
||||
WorkData(const Ptr<TrainData>& _data);
|
||||
|
||||
Ptr<TrainData> data;
|
||||
vector<WNode> wnodes;
|
||||
vector<WSplit> wsplits;
|
||||
vector<int> wsubsets;
|
||||
vector<int> cv_Tn;
|
||||
vector<double> cv_node_risk;
|
||||
vector<double> cv_node_error;
|
||||
vector<int> cv_labels;
|
||||
vector<double> sample_weights;
|
||||
vector<int> cat_responses;
|
||||
vector<double> ord_responses;
|
||||
vector<int> sidx;
|
||||
int maxSubsetSize;
|
||||
};
|
||||
|
||||
DTreesImpl();
|
||||
virtual ~DTreesImpl();
|
||||
virtual void clear();
|
||||
|
||||
String getDefaultModelName() const { return "opencv_ml_dtree"; }
|
||||
bool isTrained() const { return !roots.empty(); }
|
||||
bool isClassifier() const { return _isClassifier; }
|
||||
int getVarCount() const { return varType.empty() ? 0 : (int)(varType.size() - 1); }
|
||||
int getCatCount(int vi) const { return catOfs[vi][1] - catOfs[vi][0]; }
|
||||
int getSubsetSize(int vi) const { return (getCatCount(vi) + 31)/32; }
|
||||
|
||||
virtual void setDParams(const Params& _params);
|
||||
virtual Params getDParams() const;
|
||||
virtual void startTraining( const Ptr<TrainData>& trainData, int flags );
|
||||
virtual void endTraining();
|
||||
virtual void initCompVarIdx();
|
||||
virtual bool train( const Ptr<TrainData>& trainData, int flags );
|
||||
|
||||
virtual int addTree( const vector<int>& sidx );
|
||||
virtual int addNodeAndTrySplit( int parent, const vector<int>& sidx );
|
||||
virtual const vector<int>& getActiveVars();
|
||||
virtual int findBestSplit( const vector<int>& _sidx );
|
||||
virtual void calcValue( int nidx, const vector<int>& _sidx );
|
||||
|
||||
virtual WSplit findSplitOrdClass( int vi, const vector<int>& _sidx, double initQuality );
|
||||
|
||||
// simple k-means, slightly modified to take into account the "weight" (L1-norm) of each vector.
|
||||
virtual void clusterCategories( const double* vectors, int n, int m, double* csums, int k, int* labels );
|
||||
virtual WSplit findSplitCatClass( int vi, const vector<int>& _sidx, double initQuality, int* subset );
|
||||
|
||||
virtual WSplit findSplitOrdReg( int vi, const vector<int>& _sidx, double initQuality );
|
||||
virtual WSplit findSplitCatReg( int vi, const vector<int>& _sidx, double initQuality, int* subset );
|
||||
|
||||
virtual int calcDir( int splitidx, const vector<int>& _sidx, vector<int>& _sleft, vector<int>& _sright );
|
||||
virtual int pruneCV( int root );
|
||||
|
||||
virtual double updateTreeRNC( int root, double T, int fold );
|
||||
virtual bool cutTree( int root, double T, int fold, double min_alpha );
|
||||
virtual float predictTrees( const Range& range, const Mat& sample, int flags ) const;
|
||||
virtual float predict( InputArray inputs, OutputArray outputs, int flags ) const;
|
||||
|
||||
virtual void writeTrainingParams( FileStorage& fs ) const;
|
||||
virtual void writeParams( FileStorage& fs ) const;
|
||||
virtual void writeSplit( FileStorage& fs, int splitidx ) const;
|
||||
virtual void writeNode( FileStorage& fs, int nidx, int depth ) const;
|
||||
virtual void writeTree( FileStorage& fs, int root ) const;
|
||||
virtual void write( FileStorage& fs ) const;
|
||||
|
||||
virtual void readParams( const FileNode& fn );
|
||||
virtual int readSplit( const FileNode& fn );
|
||||
virtual int readNode( const FileNode& fn );
|
||||
virtual int readTree( const FileNode& fn );
|
||||
virtual void read( const FileNode& fn );
|
||||
|
||||
virtual const std::vector<int>& getRoots() const { return roots; }
|
||||
virtual const std::vector<Node>& getNodes() const { return nodes; }
|
||||
virtual const std::vector<Split>& getSplits() const { return splits; }
|
||||
virtual const std::vector<int>& getSubsets() const { return subsets; }
|
||||
|
||||
Params params0, params;
|
||||
|
||||
vector<int> varIdx;
|
||||
vector<int> compVarIdx;
|
||||
vector<uchar> varType;
|
||||
vector<Vec2i> catOfs;
|
||||
vector<int> catMap;
|
||||
vector<int> roots;
|
||||
vector<Node> nodes;
|
||||
vector<Split> splits;
|
||||
vector<int> subsets;
|
||||
vector<int> classLabels;
|
||||
vector<float> missingSubst;
|
||||
bool _isClassifier;
|
||||
|
||||
Ptr<WorkData> w;
|
||||
};
|
||||
|
||||
}}
|
||||
|
||||
#endif /* __OPENCV_ML_PRECOMP_HPP__ */
|
||||
|
Reference in New Issue
Block a user