add feature rescaling according to Dollal's paper FPDW

This commit is contained in:
marina.kolpakova 2012-09-14 19:22:08 +04:00
parent 8d90b973b0
commit ba27d89173

View File

@ -11,16 +11,16 @@
// For Open Source Computer Vision Library // For Open Source Computer Vision Library
// //
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. // Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners. // Third party copyrights are property of their respective owners.
// //
// Redistribution and use in source and binary forms, with or without modification, // Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met: // are permitted provided that the following conditions are met:
// //
// * Redistributions of source code must retain the above copyright notice, // * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer. // this list of conditions and the following disclaimer.
// //
// * Redistributions in binary form must reproduce the above copyright notice, // * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation // this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution. // and/or other materials provided with the distribution.
// //
@ -37,6 +37,7 @@
// and on any theory of liability, whether in contract, strict liability, // and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of // or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage. // the use of this software, even if advised of the possibility of such damage.
//
//M*/ //M*/
#include <precomp.hpp> #include <precomp.hpp>
@ -137,6 +138,43 @@ struct Level
workRect(cv::Size(cvRound(w / (float)shrinkage),cvRound(h / (float)shrinkage))), workRect(cv::Size(cvRound(w / (float)shrinkage),cvRound(h / (float)shrinkage))),
objSize(cv::Size(cvRound(oct.size.width * relScale), cvRound(oct.size.height * relScale))) objSize(cv::Size(cvRound(oct.size.width * relScale), cvRound(oct.size.height * relScale)))
{} {}
void markDetection(const int x, const int dx, std::vector<cv::Rect>& detections) const
{
}
};
struct CascadeIntrinsics
{
static const float lambda = 1.099f, a = 0.89f;
static float getFor(int channel, float scaling)
{
CV_Assert(channel < 10);
if ((scaling - 1.f) < FLT_EPSILON)
return 1.f;
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
static const float A[2][2] =
{ //channel <= 6, otherwise
{ 0.89f, 1.f}, // down
{ 1.00f, 1.f} // up
};
static const float B[2][2] =
{ //channel <= 6, otherwise
{ 1.099f / log(2), 2.f}, // down
{ 2.f, 2.f} // up
};
float a = A[(int)(scaling >= 1)][(int)(channel >= 6)];
float b = B[(int)(scaling >= 1)][(int)(channel >= 6)];
return a * pow(scaling, b);
}
}; };
// Feature rescale(float relScale) // Feature rescale(float relScale)
@ -148,42 +186,6 @@ struct Level
// return res; // return res;
// } // }
// // according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
// struct CascadeIntrinsics
// {
// static const float lambda = 1.099f, a = 0.89f;
// static const float intrinsics[10][4];
// static float getFor(int channel, float scaling)
// {
// CV_Assert(channel < 10);
// if ((scaling - 1.f) < FLT_EPSILON)
// return 1.f;
// int ud = (int)(scaling < 1.f);
// return intrinsics[channel][(ud << 1)] * pow(scaling, intrinsics[channel][(ud << 1) + 1]);
// }
// };
// const float CascadeIntrinsics::intrinsics[10][4] =
// { //da, db, ua, ub
// // hog-like orientation bins
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// // gradient magnitude
// {a, lambda / log(2), 1, 2},
// // luv color channels
// {1, 2, 1, 2},
// {1, 2, 1, 2},
// {1, 2, 1, 2}
// };
void calcHistBins(const cv::Mat& grey, cv::Mat& magIntegral, std::vector<cv::Mat>& histInts, void calcHistBins(const cv::Mat& grey, cv::Mat& magIntegral, std::vector<cv::Mat>& histInts,
const int bins, int shrinkage) const int bins, int shrinkage)
@ -236,6 +238,7 @@ void calcHistBins(const cv::Mat& grey, cv::Mat& magIntegral, std::vector<cv::Mat
cv::resize(mag, shrMag, cv::Size(), scale, scale, cv::INTER_AREA); cv::resize(mag, shrMag, cv::Size(), scale, scale, cv::INTER_AREA);
cv::integral(shrMag, magIntegral, mag.depth()); cv::integral(shrMag, magIntegral, mag.depth());
histInts.push_back(magIntegral);
} }
struct ChannelStorage struct ChannelStorage
@ -246,25 +249,40 @@ struct ChannelStorage
int shrinkage; int shrinkage;
enum {HOG_BINS = 6}; enum {HOG_BINS = 6, HOG_LUV_BINS = 10};
ChannelStorage() {} ChannelStorage() {}
ChannelStorage(const cv::Mat& colored, int shr) : shrinkage(shr) ChannelStorage(const cv::Mat& colored, int shr) : shrinkage(shr)
{ {
cv::Mat _luv; cv::Mat _luv, shrLuv;
cv::cvtColor(colored, _luv, CV_BGR2Luv); cv::cvtColor(colored, _luv, CV_BGR2Luv);
cv::resize(_luv, shrLuv, cv::Size(), 1.f / shr, 1.f / shr, cv::INTER_AREA);
cv::integral(luv, luv); cv::integral(shrLuv, luv);
std::vector<cv::Mat> splited;
split(luv, splited);
cv::Mat grey; cv::Mat grey;
cv::cvtColor(colored, grey, CV_RGB2GRAY); cv::cvtColor(colored, grey, CV_RGB2GRAY);
calcHistBins(grey, magnitude, hog, HOG_BINS, shrinkage); calcHistBins(grey, magnitude, hog, HOG_BINS, shrinkage);
hog.insert(hog.end(), splited.begin(), splited.end());
} }
float get(int chennel, cv::Rect area) const float get(const int x, const int y, const int channel, const cv::Rect& area) const
{ {
return 1.f; CV_Assert(channel < HOG_LUV_BINS);
const cv::Mat m = hog[channel];
float a = m.ptr(y + area.y)[x + area.x];
float b = m.ptr(y + area.y)[x + area.width];
float c = m.ptr(y + area.height)[x + area.width];
float d = m.ptr(y + area.height)[x + area.x];
return (a - b + c - d);
} }
}; };
} }
@ -291,33 +309,87 @@ struct cv::SoftCascade::Filds
typedef std::vector<Octave>::iterator octIt_t; typedef std::vector<Octave>::iterator octIt_t;
void detectAt(const Level& level, const int dx, const int dy, const ChannelStorage& storage, void detectAt(const Level& level, const int dx, const int dy, const ChannelStorage& storage,
const std::vector<cv::Rect>& detections) const std::vector<cv::Rect>& detections) const
{ {
float detectionScore = 0.f; float detectionScore = 0.f;
const Octave& octave = *(level.octave); const Octave& octave = *(level.octave);
int stBegin = octave.index() * octave.stages, stEnd = stBegin + octave.stages; int stBegin = octave.index() * octave.stages, stEnd = stBegin + octave.stages;
for(int st = stBegin; st < stEnd; ++st) int st = stBegin;
for(; st < stEnd; ++st)
{ {
const Stage& stage = stages[st]; const Stage& stage = stages[st];
if (detectionScore > stage.threshold)
{ {
int nId = st * 3; int nId = st * 3;
// work with root node
const Node& node = nodes[nId]; const Node& node = nodes[nId];
const Feature& feature = features[node.feature]; const Feature& feature = features[node.feature];
float sum = storage.get(feature.channel, feature.rect); // rescaling
int next = (sum >= node.threshold)? 2 : 1; float scaling = CascadeIntrinsics::getFor(feature.channel, level.relScale);
cv::Rect scaledRect = feature.rect;
float farea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y);
// rescale
scaledRect.x = cvRound(scaling * scaledRect.x);
scaledRect.y = cvRound(scaling * scaledRect.y);
scaledRect.width = cvRound(scaling * scaledRect.width);
scaledRect.height = cvRound(scaling * scaledRect.height);
float sarea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y);
float approx = 1.f;
if ((farea - 0.f) > FLT_EPSILON && (farea - 0.f) > FLT_EPSILON)
{
const float expected_new_area = farea*level.relScale*level.relScale;
approx = expected_new_area / sarea;
}
float rootThreshold = node.threshold / approx; // ToDo check
rootThreshold *= scaling;
// use rescaled
float sum = storage.get(dx, dy, feature.channel, scaledRect);
int next = (sum >= rootThreshold)? 2 : 1;
// leaces
const Node& leaf = nodes[nId + next]; const Node& leaf = nodes[nId + next];
const Feature& fLeaf = features[node.feature]; const Feature& fLeaf = features[node.feature];
sum = storage.get(feature.channel, feature.rect);
int lShift = (next - 1) * 2 + (sum >= leaf.threshold) ? 1 : 0; // rescaling
scaling = CascadeIntrinsics::getFor(fLeaf.channel, level.relScale);
scaledRect = fLeaf.rect;
farea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y);
// rescale
scaledRect.x = cvRound(scaling * scaledRect.x);
scaledRect.y = cvRound(scaling * scaledRect.y);
scaledRect.width = cvRound(scaling * scaledRect.width);
scaledRect.height = cvRound(scaling * scaledRect.height);
sarea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y);
approx = 1.f;
if ((farea - 0.f) > FLT_EPSILON && (farea - 0.f) > FLT_EPSILON)
{
const float expected_new_area = farea*level.relScale*level.relScale;
approx = expected_new_area / sarea;
}
rootThreshold = leaf.threshold / approx; // ToDo check
rootThreshold *= scaling;
sum = storage.get(dx, dy, feature.channel, scaledRect);
int lShift = (next - 1) * 2 + (sum >= rootThreshold) ? 1 : 0;
float impact = leaves[nId + lShift]; float impact = leaves[nId + lShift];
detectionScore += impact; detectionScore += impact;
} }
if (detectionScore <= stage.threshold) break;
} }
if (st == octave.stages - 1)
level.markDetection(dx, dy, detections);
} }
octIt_t fitOctave(const float& logFactor) octIt_t fitOctave(const float& logFactor)