From b987154ebc6757050c691d01dcb63d3d33cd8f7e Mon Sep 17 00:00:00 2001 From: Alexander Mordvintsev Date: Wed, 27 Jun 2012 08:29:22 +0000 Subject: [PATCH] digits_video.py prints warning if trained classifier (should be created by digits.py) not found --- samples/python2/digits_video.py | 121 +++++++++++++++++--------------- 1 file changed, 66 insertions(+), 55 deletions(-) diff --git a/samples/python2/digits_video.py b/samples/python2/digits_video.py index 9b17bfacc..350a637e5 100644 --- a/samples/python2/digits_video.py +++ b/samples/python2/digits_video.py @@ -1,63 +1,74 @@ import numpy as np import cv2 -#import video import digits +import os +import video from common import mosaic -#cap = video.create_capture() -cap = cv2.VideoCapture(0) - -model = digits.SVM() -model.load('digits_svm.dat') - -SZ = 20 - -while True: - ret, frame = cap.read() - gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) - - bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10) - bin = cv2.medianBlur(bin, 3) - contours, _ = cv2.findContours( bin.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) - - boxes = [] - for cnt in contours: - x, y, w, h = cv2.boundingRect(cnt) - if h < 20 or h > 60 or 1.2*h < w: - continue - cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0)) - sub = bin[y:,x:][:h,:w] - #sub = ~cv2.equalizeHist(sub) - #_, sub_bin = cv2.threshold(sub, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) - - s = 1.1*h/SZ - m = cv2.moments(sub) - m00 = m['m00'] - if m00/255 < 0.1*w*h or m00/255 > 0.9*w*h: - continue - - #frame[y:,x:][:h,:w] = sub[...,np.newaxis] - c1 = np.float32([m['m10'], m['m01']]) / m00 - c0 = np.float32([SZ/2, SZ/2]) - t = c1 - s*c0 - A = np.zeros((2, 3), np.float32) - A[:,:2] = np.eye(2)*2 - A[:,2] = t - sub1 = cv2.warpAffine(sub, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) - sub1 = digits.deskew(sub1) - sample = np.float32(sub1).reshape(1,SZ*SZ) / 255.0 - digit = model.predict(sample)[0] - - cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1) - - boxes.append(sub1) - if len(boxes) > 0: - cv2.imshow('box', mosaic(10, boxes)) - +def main(): + cap = video.create_capture() - cv2.imshow('frame', frame) - cv2.imshow('bin', bin) - if cv2.waitKey(1) == 27: - break + classifier_fn = 'digits_svm.dat' + if not os.path.exists(classifier_fn): + print '"%s" not found, run digits.py first' % classifier_fn + return + + model = digits.SVM() + model.load('digits_svm.dat') + + SZ = 20 + + while True: + ret, frame = cap.read() + gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) + + bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10) + bin = cv2.medianBlur(bin, 3) + contours, _ = cv2.findContours( bin.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) + + boxes = [] + for cnt in contours: + x, y, w, h = cv2.boundingRect(cnt) + if h < 20 or h > 60 or 1.2*h < w: + continue + cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0)) + sub = bin[y:,x:][:h,:w] + #sub = ~cv2.equalizeHist(sub) + #_, sub_bin = cv2.threshold(sub, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) + + s = 1.1*h/SZ + m = cv2.moments(sub) + m00 = m['m00'] + if m00/255 < 0.1*w*h or m00/255 > 0.9*w*h: + continue + + #frame[y:,x:][:h,:w] = sub[...,np.newaxis] + c1 = np.float32([m['m10'], m['m01']]) / m00 + c0 = np.float32([SZ/2, SZ/2]) + t = c1 - s*c0 + A = np.zeros((2, 3), np.float32) + A[:,:2] = np.eye(2)*2 + A[:,2] = t + sub1 = cv2.warpAffine(sub, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) + sub1 = digits.deskew(sub1) + sample = np.float32(sub1).reshape(1,SZ*SZ) / 255.0 + digit = model.predict(sample)[0] + + cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1) + + boxes.append(sub1) + + + if len(boxes) > 0: + cv2.imshow('box', mosaic(10, boxes)) + + + cv2.imshow('frame', frame) + cv2.imshow('bin', bin) + if cv2.waitKey(1) == 27: + break + +if __name__ == '__main__': + main()