renamed cv::flann to cv::cvflann to avoid name conflicts
This commit is contained in:
@@ -293,11 +293,11 @@ This section documents OpenCV's interface to the FLANN\footnote{http://people.cs
|
||||
contains a collection of algorithms optimized for fast nearest neighbor search in large datasets and for high dimensional features. More
|
||||
information about FLANN can be found in \cite{muja_flann_2009}.
|
||||
|
||||
\cvclass{flann::Index}
|
||||
\cvclass{cvflann::Index}
|
||||
The FLANN nearest neighbor index class.
|
||||
|
||||
\begin{lstlisting}
|
||||
namespace flann
|
||||
namespace cvflann
|
||||
{
|
||||
class Index
|
||||
{
|
||||
@@ -335,7 +335,7 @@ namespace flann
|
||||
}
|
||||
\end{lstlisting}
|
||||
|
||||
\cvCppFunc{flann::Index::Index}
|
||||
\cvCppFunc{cvflann::Index::Index}
|
||||
Constructs a nearest neighbor search index for a given dataset.
|
||||
|
||||
\cvdefCpp{Index::Index(const Mat\& features, const IndexParams\& params);}
|
||||
@@ -452,7 +452,7 @@ optimum parameters.}
|
||||
}
|
||||
\end{description}
|
||||
|
||||
\cvCppFunc{flann::Index::knnSearch}
|
||||
\cvCppFunc{cvflann::Index::knnSearch}
|
||||
Performs a K-nearest neighbor search for a given query point using the index.
|
||||
\cvdefCpp{void Index::knnSearch(const vector<float>\& query, \par
|
||||
vector<int>\& indices, \par
|
||||
@@ -479,7 +479,7 @@ precision was also computed, in which case this parameter is ignored.}
|
||||
\end{description}
|
||||
\end{description}
|
||||
|
||||
\cvCppFunc{flann::Index::knnSearch}
|
||||
\cvCppFunc{cvflann::Index::knnSearch}
|
||||
Performs a K-nearest neighbor search for multiple query points.
|
||||
|
||||
\cvdefCpp{void Index::knnSearch(const Mat\& queries,\par
|
||||
@@ -495,7 +495,7 @@ Performs a K-nearest neighbor search for multiple query points.
|
||||
\end{description}
|
||||
|
||||
|
||||
\cvCppFunc{flann::Index::radiusSearch}
|
||||
\cvCppFunc{cvflann::Index::radiusSearch}
|
||||
Performs a radius nearest neighbor search for a given query point.
|
||||
\cvdefCpp{int Index::radiusSearch(const vector<float>\& query, \par
|
||||
vector<int>\& indices, \par
|
||||
@@ -511,7 +511,7 @@ Performs a radius nearest neighbor search for a given query point.
|
||||
\end{description}
|
||||
|
||||
|
||||
\cvCppFunc{flann::Index::radiusSearch}
|
||||
\cvCppFunc{cvflann::Index::radiusSearch}
|
||||
Performs a radius nearest neighbor search for multiple query points.
|
||||
\cvdefCpp{int Index::radiusSearch(const Mat\& query, \par
|
||||
Mat\& indices, \par
|
||||
@@ -527,7 +527,7 @@ Performs a radius nearest neighbor search for multiple query points.
|
||||
\end{description}
|
||||
|
||||
|
||||
\cvCppFunc{flann::Index::save}
|
||||
\cvCppFunc{cvflann::Index::save}
|
||||
Saves the index to a file.
|
||||
\cvdefCpp{void Index::save(std::string filename);}
|
||||
\begin{description}
|
||||
@@ -535,7 +535,7 @@ Saves the index to a file.
|
||||
\end{description}
|
||||
|
||||
|
||||
\cvCppFunc{flann::hierarchicalClustering}
|
||||
\cvCppFunc{cvflann::hierarchicalClustering}
|
||||
Clusters the given points by constructing a hierarchical k-means tree and choosing a cut in the tree that minimizes the cluster's variance.
|
||||
\cvdefCpp{int hierarchicalClustering(const Mat\& features, Mat\& centers,\par
|
||||
const KMeansIndexParams\& params);}
|
||||
|
Reference in New Issue
Block a user