modified EM interface; updated tests & samples

This commit is contained in:
Vadim Pisarevsky 2012-04-06 15:59:30 +00:00
parent 1c1c6b98f6
commit b8c310065c
8 changed files with 338 additions and 333 deletions

View File

@ -66,7 +66,6 @@ struct CV_EXPORTS CvMotionModel
}
float low_pass_gain; // low pass gain
cv::EM::Params em_params; // EM parameters
};
// Mean Shift Tracker parameters for specifying use of HSV channel and CamShift parameters.
@ -109,7 +108,6 @@ struct CV_EXPORTS CvHybridTrackerParams
float ms_tracker_weight;
CvFeatureTrackerParams ft_params;
CvMeanShiftTrackerParams ms_params;
cv::EM::Params em_params;
int motion_model;
float low_pass_gain;
};
@ -182,7 +180,6 @@ private:
CvMat* samples;
CvMat* labels;
cv::EM em_model;
Rect prev_window;
Point2f prev_center;

View File

@ -132,17 +132,6 @@ void CvHybridTracker::newTracker(Mat image, Rect selection) {
mstracker->newTrackingWindow(image, selection);
fttracker->newTrackingWindow(image, selection);
params.em_params.covs = NULL;
params.em_params.means = NULL;
params.em_params.probs = NULL;
params.em_params.nclusters = 1;
params.em_params.weights = NULL;
params.em_params.covMatType = cv::EM::COV_MAT_SPHERICAL;
params.em_params.startStep = cv::EM::START_AUTO_STEP;
params.em_params.termCrit.maxCount = 10000;
params.em_params.termCrit.epsilon = 0.001;
params.em_params.termCrit.type = cv::TermCriteria::COUNT + cv::TermCriteria::EPS;
samples = cvCreateMat(2, 1, CV_32FC1);
labels = cvCreateMat(2, 1, CV_32SC1);
@ -222,12 +211,15 @@ void CvHybridTracker::updateTrackerWithEM(Mat image) {
}
cv::Mat lbls;
em_model.train(samples, cv::Mat(), params.em_params, &lbls);
EM em_model(1, EM::COV_MAT_SPHERICAL, TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 10000, 0.001));
em_model.train(cvarrToMat(samples), lbls);
if(labels)
*labels = lbls;
lbls.copyTo(cvarrToMat(labels));
curr_center.x = (float)em_model.getMeans().at<double> (0, 0);
curr_center.y = (float)em_model.getMeans().at<double> (0, 1);
Mat em_means = em_model.get<Mat>("means");
curr_center.x = (float)em_means.at<float>(0, 0);
curr_center.y = (float)em_means.at<float>(0, 1);
}
void CvHybridTracker::updateTrackerWithLowPassFilter(Mat image) {

View File

@ -1821,10 +1821,10 @@ public:
CV_WRAP virtual double calcLikelihood( const cv::Mat &sample ) const;
CV_WRAP int getNClusters() const;
CV_WRAP const cv::Mat& getMeans() const;
CV_WRAP cv::Mat getMeans() const;
CV_WRAP void getCovs(CV_OUT std::vector<cv::Mat>& covs) const;
CV_WRAP const cv::Mat& getWeights() const;
CV_WRAP const cv::Mat& getProbs() const;
CV_WRAP cv::Mat getWeights() const;
CV_WRAP cv::Mat getProbs() const;
CV_WRAP inline double getLikelihood() const { return emObj.isTrained() ? likelihood : DBL_MAX; }
#endif

View File

@ -41,6 +41,8 @@
#include "precomp.hpp"
using namespace cv;
CvEMParams::CvEMParams() : nclusters(10), cov_mat_type(CvEM::COV_MAT_DIAGONAL),
start_step(CvEM::START_AUTO_STEP), probs(0), weights(0), means(0), covs(0)
{
@ -76,38 +78,44 @@ void CvEM::clear()
void CvEM::read( CvFileStorage* fs, CvFileNode* node )
{
cv::FileNode fn(fs, node);
FileNode fn(fs, node);
emObj.read(fn);
set_mat_hdrs();
}
void CvEM::write( CvFileStorage* _fs, const char* name ) const
{
cv::FileStorage fs = _fs;
FileStorage fs = _fs;
if(name)
fs << name << "{";
emObj.write(fs);
if(name)
fs << "}";
fs.fs.obj = 0;
}
double CvEM::calcLikelihood( const cv::Mat &input_sample ) const
double CvEM::calcLikelihood( const Mat &input_sample ) const
{
double likelihood;
emObj.predict(input_sample, 0, &likelihood);
emObj.predict(input_sample, noArray(), &likelihood);
return likelihood;
}
float
CvEM::predict( const CvMat* _sample, CvMat* _probs, bool isNormalize ) const
{
cv::Mat prbs;
int cls = emObj.predict(_sample, _probs ? &prbs : 0);
Mat prbs0 = cvarrToMat(_probs), prbs = prbs0, sample = cvarrToMat(_sample);
int cls = emObj.predict(sample, _probs ? _OutputArray(prbs) : _OutputArray::_OutputArray());
if(_probs)
{
if(isNormalize)
cv::normalize(prbs, prbs, 1, 0, cv::NORM_L1);
*_probs = prbs;
normalize(prbs, prbs, 1, 0, NORM_L1);
if( prbs.data != prbs0.data )
{
CV_Assert( prbs.size == prbs0.size );
prbs.convertTo(prbs0, prbs0.type());
}
}
return (float)cls;
}
@ -116,73 +124,55 @@ void CvEM::set_mat_hdrs()
{
if(emObj.isTrained())
{
meansHdr = emObj.getMeans();
covsHdrs.resize(emObj.getNClusters());
covsPtrs.resize(emObj.getNClusters());
const std::vector<cv::Mat>& covs = emObj.getCovs();
meansHdr = emObj.get<Mat>("means");
int K = emObj.get<int>("nclusters");
covsHdrs.resize(K);
covsPtrs.resize(K);
const std::vector<Mat>& covs = emObj.get<vector<Mat> >("covs");
for(size_t i = 0; i < covsHdrs.size(); i++)
{
covsHdrs[i] = covs[i];
covsPtrs[i] = &covsHdrs[i];
}
weightsHdr = emObj.getWeights();
weightsHdr = emObj.get<Mat>("weights");
probsHdr = probs;
}
}
static
void init_params(const CvEMParams& src, cv::EM::Params& dst,
cv::Mat& prbs, cv::Mat& weights,
cv::Mat& means, cv::vector<cv::Mat>& covsHdrs)
void init_params(const CvEMParams& src,
Mat& prbs, Mat& weights,
Mat& means, vector<Mat>& covsHdrs)
{
dst.nclusters = src.nclusters;
dst.covMatType = src.cov_mat_type;
dst.startStep = src.start_step;
dst.termCrit = src.term_crit;
prbs = src.probs;
dst.probs = &prbs;
weights = src.weights;
dst.weights = &weights;
means = src.means;
dst.means = &means;
if(src.covs)
{
covsHdrs.resize(src.nclusters);
for(size_t i = 0; i < covsHdrs.size(); i++)
covsHdrs[i] = src.covs[i];
dst.covs = &covsHdrs;
}
}
bool CvEM::train( const CvMat* _samples, const CvMat* _sample_idx,
CvEMParams _params, CvMat* _labels )
{
cv::EM::Params params;
cv::Mat prbs, weights, means;
std::vector<cv::Mat> covsHdrs;
init_params(_params, params, prbs, weights, means, covsHdrs);
cv::Mat lbls;
cv::Mat likelihoods;
bool isOk = emObj.train(_samples, _sample_idx, params, _labels ? &lbls : 0, &probs, &likelihoods );
if(isOk)
{
if(_labels)
*_labels = lbls;
likelihood = cv::sum(likelihoods)[0];
set_mat_hdrs();
}
CV_Assert(_sample_idx == 0);
Mat samples = cvarrToMat(_samples), labels0, labels;
if( _labels )
labels0 = labels = cvarrToMat(_labels);
bool isOk = train(samples, Mat(), _params, _labels ? &labels : 0);
CV_Assert( labels0.data == labels.data );
return isOk;
}
int CvEM::get_nclusters() const
{
return emObj.getNClusters();
return emObj.get<int>("nclusters");
}
const CvMat* CvEM::get_means() const
@ -215,16 +205,29 @@ CvEM::CvEM( const Mat& samples, const Mat& sample_idx, CvEMParams params )
bool CvEM::train( const Mat& _samples, const Mat& _sample_idx,
CvEMParams _params, Mat* _labels )
{
cv::EM::Params params;
cv::Mat prbs, weights, means;
std::vector<cv::Mat> covsHdrs;
init_params(_params, params, prbs, weights, means, covsHdrs);
Mat prbs, weights, means, likelihoods;
std::vector<Mat> covsHdrs;
init_params(_params, prbs, weights, means, covsHdrs);
cv::Mat likelihoods;
bool isOk = emObj.train(_samples, _sample_idx, params, _labels, &probs, &likelihoods);
emObj = EM(_params.nclusters, _params.cov_mat_type, _params.term_crit);
bool isOk = false;
if( _params.start_step == EM::START_AUTO_STEP )
isOk = emObj.train(_samples, _labels ? _OutputArray(*_labels) : _OutputArray::_OutputArray(),
probs, likelihoods);
else if( _params.start_step == EM::START_E_STEP )
isOk = emObj.trainE(_samples, means, covsHdrs, weights,
_labels ? _OutputArray(*_labels) : _OutputArray::_OutputArray(),
probs, likelihoods);
else if( _params.start_step == EM::START_M_STEP )
isOk = emObj.trainM(_samples, prbs,
_labels ? _OutputArray(*_labels) : _OutputArray::_OutputArray(),
probs, likelihoods);
else
CV_Error(CV_StsBadArg, "Bad start type of EM algorithm");
if(isOk)
{
likelihoods = cv::sum(likelihoods).val[0];
likelihoods = sum(likelihoods).val[0];
set_mat_hdrs();
}
@ -234,34 +237,34 @@ bool CvEM::train( const Mat& _samples, const Mat& _sample_idx,
float
CvEM::predict( const Mat& _sample, Mat* _probs, bool isNormalize ) const
{
int cls = emObj.predict(_sample, _probs);
int cls = emObj.predict(_sample, _probs ? _OutputArray(*_probs) : _OutputArray::_OutputArray());
if(_probs && isNormalize)
cv::normalize(*_probs, *_probs, 1, 0, cv::NORM_L1);
normalize(*_probs, *_probs, 1, 0, NORM_L1);
return (float)cls;
}
int CvEM::getNClusters() const
{
return emObj.getNClusters();
return emObj.get<int>("nclusters");
}
const Mat& CvEM::getMeans() const
Mat CvEM::getMeans() const
{
return emObj.getMeans();
return emObj.get<Mat>("means");
}
void CvEM::getCovs(vector<Mat>& _covs) const
{
_covs = emObj.getCovs();
_covs = emObj.get<vector<Mat> >("covs");
}
const Mat& CvEM::getWeights() const
Mat CvEM::getWeights() const
{
return emObj.getWeights();
return emObj.get<Mat>("weights");
}
const Mat& CvEM::getProbs() const
Mat CvEM::getProbs() const
{
return probs;
}

View File

@ -371,19 +371,20 @@ protected:
virtual void run( int /*start_from*/ )
{
int code = cvtest::TS::OK;
cv::EM em;
Mat samples = Mat(3,1,CV_32F);
samples.at<float>(0,0) = 1;
samples.at<float>(1,0) = 2;
samples.at<float>(2,0) = 3;
Mat labels(samples.rows, 1, CV_32S);
cv::EM::Params params;
CvEMParams params;
params.nclusters = 2;
Mat labels;
CvMat samples_c = samples, labels_c = labels;
em.train(samples, Mat(), params, &labels);
CvEM em(&samples_c, 0, params, &labels_c);
Mat firstResult(samples.rows, 1, CV_32FC1);
for( int i = 0; i < samples.rows; i++)
@ -396,9 +397,7 @@ protected:
FileStorage fs = FileStorage(filename, FileStorage::WRITE);
try
{
fs << "em" << "{";
em.write(fs);
fs << "}";
em.write(fs.fs, "em");
}
catch(...)
{
@ -416,7 +415,7 @@ protected:
FileNode fn = fs["em"];
try
{
em.read(fn);
em.read(fs.fs, (CvFileNode*)fn.node);
}
catch(...)
{

View File

@ -555,61 +555,66 @@ protected:
\****************************************************************************************/
namespace cv
{
class CV_EXPORTS EM : public Algorithm
class CV_EXPORTS_W EM : public Algorithm
{
public:
// Type of covariation matrices
enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2};
enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL};
// Default parameters
enum {DEFAULT_NCLUSTERS=10, DEFAULT_MAX_ITERS=100};
// The initial step
enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};
class CV_EXPORTS Params
{
public:
Params(int nclusters=10, int covMatType=EM::COV_MAT_DIAGONAL, int startStep=EM::START_AUTO_STEP,
const cv::TermCriteria& termCrit=cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 100, FLT_EPSILON),
const cv::Mat* probs=0, const cv::Mat* weights=0,
const cv::Mat* means=0, const std::vector<cv::Mat>* covs=0);
int nclusters;
int covMatType;
int startStep;
// all 4 following matrices should have type CV_32FC1
const cv::Mat* probs;
const cv::Mat* weights;
const cv::Mat* means;
const std::vector<cv::Mat>* covs;
cv::TermCriteria termCrit;
};
EM();
EM(const cv::Mat& samples, const cv::Mat samplesMask=cv::Mat(),
const EM::Params& params=EM::Params(), cv::Mat* labels=0, cv::Mat* probs=0, cv::Mat* likelihoods=0);
CV_WRAP EM(int nclusters=EM::DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
const TermCriteria& termcrit=TermCriteria(TermCriteria::COUNT+
TermCriteria::EPS,
EM::DEFAULT_MAX_ITERS, FLT_EPSILON));
virtual ~EM();
virtual void clear();
CV_WRAP virtual void clear();
virtual bool train(const cv::Mat& samples, const cv::Mat& samplesMask=cv::Mat(),
const EM::Params& params=EM::Params(), cv::Mat* labels=0, cv::Mat* probs=0, cv::Mat* likelihoods=0);
int predict(const cv::Mat& sample, cv::Mat* probs=0, double* likelihood=0) const;
CV_WRAP virtual bool train(InputArray samples,
OutputArray labels=noArray(),
OutputArray probs=noArray(),
OutputArray likelihoods=noArray());
CV_WRAP virtual bool trainE(InputArray samples,
InputArray means0,
InputArray covs0=noArray(),
InputArray weights0=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray(),
OutputArray likelihoods=noArray());
CV_WRAP virtual bool trainM(InputArray samples,
InputArray probs0,
OutputArray labels=noArray(),
OutputArray probs=noArray(),
OutputArray likelihoods=noArray());
CV_WRAP int predict(InputArray sample,
OutputArray probs=noArray(),
CV_OUT double* likelihood=0) const;
bool isTrained() const;
int getNClusters() const;
int getCovMatType() const;
const cv::Mat& getWeights() const;
const cv::Mat& getMeans() const;
const std::vector<cv::Mat>& getCovs() const;
CV_WRAP bool isTrained() const;
AlgorithmInfo* info() const;
virtual void read(const FileNode& fn);
protected:
virtual void setTrainData(const cv::Mat& samples, const cv::Mat& samplesMask, const EM::Params& params);
virtual void setTrainData(int startStep, const Mat& samples,
const Mat* probs0,
const Mat* means0,
const vector<Mat>* covs0,
const Mat* weights0);
bool doTrain(const cv::TermCriteria& termCrit);
bool doTrain(int startStep,
OutputArray labels,
OutputArray probs,
OutputArray likelihoods);
virtual void eStep();
virtual void mStep();
@ -617,27 +622,28 @@ protected:
void decomposeCovs();
void computeLogWeightDivDet();
void computeProbabilities(const cv::Mat& sample, int& label, cv::Mat* probs, float* likelihood) const;
void computeProbabilities(const Mat& sample, int& label, Mat* probs, float* likelihood) const;
// all inner matrices have type CV_32FC1
int nclusters;
int covMatType;
int startStep;
CV_PROP_RW int nclusters;
CV_PROP_RW int covMatType;
CV_PROP_RW int maxIters;
CV_PROP_RW double epsilon;
cv::Mat trainSamples;
cv::Mat trainProbs;
cv::Mat trainLikelihoods;
cv::Mat trainLabels;
cv::Mat trainCounts;
Mat trainSamples;
Mat trainProbs;
Mat trainLikelihoods;
Mat trainLabels;
Mat trainCounts;
cv::Mat weights;
cv::Mat means;
std::vector<cv::Mat> covs;
CV_PROP Mat weights;
CV_PROP Mat means;
CV_PROP vector<Mat> covs;
std::vector<cv::Mat> covsEigenValues;
std::vector<cv::Mat> covsRotateMats;
std::vector<cv::Mat> invCovsEigenValues;
cv::Mat logWeightDivDet;
vector<Mat> covsEigenValues;
vector<Mat> covsRotateMats;
vector<Mat> invCovsEigenValues;
Mat logWeightDivDet;
};
} // namespace cv

View File

@ -46,22 +46,14 @@ namespace cv
const float minEigenValue = 1.e-3f;
EM::Params::Params( int nclusters, int covMatType, int startStep, const cv::TermCriteria& termCrit,
const cv::Mat* probs, const cv::Mat* weights,
const cv::Mat* means, const std::vector<cv::Mat>* covs )
: nclusters(nclusters), covMatType(covMatType), startStep(startStep),
probs(probs), weights(weights), means(means), covs(covs), termCrit(termCrit)
{}
///////////////////////////////////////////////////////////////////////////////////////////////////////
EM::EM()
{}
EM::EM(const cv::Mat& samples, const cv::Mat samplesMask,
const EM::Params& params, cv::Mat* labels, cv::Mat* probs, cv::Mat* likelihoods)
EM::EM(int _nclusters, int _covMatType, const TermCriteria& _criteria)
{
train(samples, samplesMask, params, labels, probs, likelihoods);
nclusters = _nclusters;
covMatType = _covMatType;
maxIters = (_criteria.type & TermCriteria::MAX_ITER) ? _criteria.maxCount : DEFAULT_MAX_ITERS;
epsilon = (_criteria.type & TermCriteria::EPS) ? _criteria.epsilon : 0;
}
EM::~EM()
@ -88,36 +80,50 @@ void EM::clear()
logWeightDivDet.release();
}
bool EM::train(const cv::Mat& samples, const cv::Mat& samplesMask,
const EM::Params& params, cv::Mat* labels, cv::Mat* probs, cv::Mat* likelihoods)
bool EM::train(InputArray samples,
OutputArray labels,
OutputArray probs,
OutputArray likelihoods)
{
setTrainData(samples, samplesMask, params);
bool isOk = doTrain(params.termCrit);
if(isOk)
{
if(labels)
cv::swap(*labels, trainLabels);
if(probs)
cv::swap(*probs, trainProbs);
if(likelihoods)
cv::swap(*likelihoods, trainLikelihoods);
trainSamples.release();
trainProbs.release();
trainLabels.release();
trainLikelihoods.release();
trainCounts.release();
}
else
clear();
return isOk;
setTrainData(START_AUTO_STEP, samples.getMat(), 0, 0, 0, 0);
return doTrain(START_AUTO_STEP, labels, probs, likelihoods);
}
int EM::predict(const cv::Mat& sample, cv::Mat* _probs, double* _likelihood) const
bool EM::trainE(InputArray samples,
InputArray _means0,
InputArray _covs0,
InputArray _weights0,
OutputArray labels,
OutputArray probs,
OutputArray likelihoods)
{
vector<Mat> covs0;
_covs0.getMatVector(covs0);
Mat means0 = _means0.getMat(), weights0 = _weights0.getMat();
setTrainData(START_E_STEP, samples.getMat(), 0, !_means0.empty() ? &means0 : 0,
!_covs0.empty() ? &covs0 : 0, _weights0.empty() ? &weights0 : 0);
return doTrain(START_E_STEP, labels, probs, likelihoods);
}
bool EM::trainM(InputArray samples,
InputArray _probs0,
OutputArray labels,
OutputArray probs,
OutputArray likelihoods)
{
Mat probs0 = _probs0.getMat();
setTrainData(START_M_STEP, samples.getMat(), !_probs0.empty() ? &probs0 : 0, 0, 0, 0);
return doTrain(START_M_STEP, labels, probs, likelihoods);
}
int EM::predict(InputArray _sample, OutputArray _probs, double* _likelihood) const
{
Mat sample = _sample.getMat();
CV_Assert(isTrained());
CV_Assert(!sample.empty());
@ -125,7 +131,13 @@ int EM::predict(const cv::Mat& sample, cv::Mat* _probs, double* _likelihood) con
int label;
float likelihood = 0.f;
computeProbabilities(sample, label, _probs, _likelihood ? &likelihood : 0);
Mat probs;
if( _probs.needed() )
{
_probs.create(1, nclusters, CV_32FC1);
probs = _probs.getMat();
}
computeProbabilities(sample, label, !probs.empty() ? &probs : 0, _likelihood ? &likelihood : 0);
if(_likelihood)
*_likelihood = static_cast<double>(likelihood);
@ -137,36 +149,11 @@ bool EM::isTrained() const
return !means.empty();
}
int EM::getNClusters() const
{
return isTrained() ? nclusters : -1;
}
int EM::getCovMatType() const
{
return isTrained() ? covMatType : -1;
}
const cv::Mat& EM::getWeights() const
{
CV_Assert((isTrained() && !weights.empty()) || (!isTrained() && weights.empty()));
return weights;
}
const cv::Mat& EM::getMeans() const
{
CV_Assert((isTrained() && !means.empty()) || (!isTrained() && means.empty()));
return means;
}
const std::vector<cv::Mat>& EM::getCovs() const
{
CV_Assert((isTrained() && !covs.empty()) || (!isTrained() && covs.empty()));
return covs;
}
static
void checkTrainData(const cv::Mat& samples, const cv::Mat& samplesMask, const EM::Params& params)
void checkTrainData(int startStep, const Mat& samples,
int nclusters, int covMatType, const Mat* probs, const Mat* means,
const vector<Mat>* covs, const Mat* weights)
{
// Check samples.
CV_Assert(!samples.empty());
@ -175,138 +162,117 @@ void checkTrainData(const cv::Mat& samples, const cv::Mat& samplesMask, const EM
int nsamples = samples.rows;
int dim = samples.cols;
// Check samples indices.
CV_Assert(samplesMask.empty() ||
((samplesMask.rows == 1 || samplesMask.cols == 1) &&
static_cast<int>(samplesMask.total()) == nsamples && samplesMask.type() == CV_8UC1));
// Check training params.
CV_Assert(params.nclusters > 0);
CV_Assert(params.nclusters <= nsamples);
CV_Assert(params.startStep == EM::START_AUTO_STEP || params.startStep == EM::START_E_STEP || params.startStep == EM::START_M_STEP);
CV_Assert(nclusters > 0);
CV_Assert(nclusters <= nsamples);
CV_Assert(startStep == EM::START_AUTO_STEP ||
startStep == EM::START_E_STEP ||
startStep == EM::START_M_STEP);
CV_Assert(!params.probs ||
(!params.probs->empty() &&
params.probs->rows == nsamples && params.probs->cols == params.nclusters &&
params.probs->type() == CV_32FC1));
CV_Assert(!probs ||
(!probs->empty() &&
probs->rows == nsamples && probs->cols == nclusters &&
probs->type() == CV_32FC1));
CV_Assert(!params.weights ||
(!params.weights->empty() &&
(params.weights->cols == 1 || params.weights->rows == 1) && static_cast<int>(params.weights->total()) == params.nclusters &&
params.weights->type() == CV_32FC1));
CV_Assert(!weights ||
(!weights->empty() &&
(weights->cols == 1 || weights->rows == 1) && static_cast<int>(weights->total()) == nclusters &&
weights->type() == CV_32FC1));
CV_Assert(!params.means ||
(!params.means->empty() &&
params.means->rows == params.nclusters && params.means->cols == dim &&
params.means->type() == CV_32FC1));
CV_Assert(!means ||
(!means->empty() &&
means->rows == nclusters && means->cols == dim &&
means->type() == CV_32FC1));
CV_Assert(!params.covs ||
(!params.covs->empty() &&
static_cast<int>(params.covs->size()) == params.nclusters));
if(params.covs)
CV_Assert(!covs ||
(!covs->empty() &&
static_cast<int>(covs->size()) == nclusters));
if(covs)
{
const cv::Size covSize(dim, dim);
for(size_t i = 0; i < params.covs->size(); i++)
const Size covSize(dim, dim);
for(size_t i = 0; i < covs->size(); i++)
{
const cv::Mat& m = (*params.covs)[i];
const Mat& m = (*covs)[i];
CV_Assert(!m.empty() && m.size() == covSize && (m.type() == CV_32FC1));
}
}
if(params.startStep == EM::START_E_STEP)
if(startStep == EM::START_E_STEP)
{
CV_Assert(params.means);
CV_Assert(means);
}
else if(params.startStep == EM::START_M_STEP)
else if(startStep == EM::START_M_STEP)
{
CV_Assert(params.probs);
CV_Assert(probs);
}
}
static
void preprocessSampleData(const cv::Mat& src, cv::Mat& dst, int dstType, const cv::Mat& samplesMask, bool isAlwaysClone)
void preprocessSampleData(const Mat& src, Mat& dst, int dstType, bool isAlwaysClone)
{
if(samplesMask.empty() || cv::countNonZero(samplesMask) == src.rows)
{
if(src.type() == dstType && !isAlwaysClone)
dst = src;
else
src.convertTo(dst, dstType);
}
if(src.type() == dstType && !isAlwaysClone)
dst = src;
else
{
dst.release();
for(int sampleIndex = 0; sampleIndex < src.rows; sampleIndex++)
{
if(samplesMask.at<uchar>(sampleIndex))
{
cv::Mat sample = src.row(sampleIndex);
cv::Mat sample_dbl;
sample.convertTo(sample_dbl, dstType);
dst.push_back(sample_dbl);
}
}
}
src.convertTo(dst, dstType);
}
static
void preprocessProbability(cv::Mat& probs)
void preprocessProbability(Mat& probs)
{
cv::max(probs, 0., probs);
max(probs, 0., probs);
const float uniformProbability = (float)(1./probs.cols);
for(int y = 0; y < probs.rows; y++)
{
cv::Mat sampleProbs = probs.row(y);
Mat sampleProbs = probs.row(y);
double maxVal = 0;
cv::minMaxLoc(sampleProbs, 0, &maxVal);
minMaxLoc(sampleProbs, 0, &maxVal);
if(maxVal < FLT_EPSILON)
sampleProbs.setTo(uniformProbability);
else
cv::normalize(sampleProbs, sampleProbs, 1, 0, cv::NORM_L1);
normalize(sampleProbs, sampleProbs, 1, 0, NORM_L1);
}
}
void EM::setTrainData(const cv::Mat& samples, const cv::Mat& samplesMask, const EM::Params& params)
void EM::setTrainData(int startStep, const Mat& samples,
const Mat* probs0,
const Mat* means0,
const vector<Mat>* covs0,
const Mat* weights0)
{
clear();
checkTrainData(samples, samplesMask, params);
checkTrainData(startStep, samples, nclusters, covMatType, probs0, means0, covs0, weights0);
// Set checked data
nclusters = params.nclusters;
covMatType = params.covMatType;
startStep = params.startStep;
preprocessSampleData(samples, trainSamples, CV_32FC1, samplesMask, false);
preprocessSampleData(samples, trainSamples, CV_32FC1, false);
// set probs
if(params.probs && startStep == EM::START_M_STEP)
if(probs0 && startStep == EM::START_M_STEP)
{
preprocessSampleData(*params.probs, trainProbs, CV_32FC1, samplesMask, true);
preprocessSampleData(*probs0, trainProbs, CV_32FC1, true);
preprocessProbability(trainProbs);
}
// set weights
if(params.weights && (startStep == EM::START_E_STEP && params.covs))
if(weights0 && (startStep == EM::START_E_STEP && covs0))
{
params.weights->convertTo(weights, CV_32FC1);
weights0->convertTo(weights, CV_32FC1);
weights.reshape(1,1);
preprocessProbability(weights);
}
// set means
if(params.means && (startStep == EM::START_E_STEP || startStep == EM::START_AUTO_STEP))
params.means->convertTo(means, CV_32FC1);
if(means0 && (startStep == EM::START_E_STEP || startStep == EM::START_AUTO_STEP))
means0->convertTo(means, CV_32FC1);
// set covs
if(params.covs && (startStep == EM::START_E_STEP && params.weights))
if(covs0 && (startStep == EM::START_E_STEP && weights0))
{
covs.resize(nclusters);
for(size_t i = 0; i < params.covs->size(); i++)
(*params.covs)[i].convertTo(covs[i], CV_32FC1);
for(size_t i = 0; i < covs0->size(); i++)
(*covs0)[i].convertTo(covs[i], CV_32FC1);
}
}
@ -321,14 +287,14 @@ void EM::decomposeCovs()
{
CV_Assert(!covs[clusterIndex].empty());
cv::SVD svd(covs[clusterIndex], cv::SVD::MODIFY_A + cv::SVD::FULL_UV);
SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV);
CV_DbgAssert(svd.w.rows == 1 || svd.w.cols == 1);
CV_DbgAssert(svd.w.type() == CV_32FC1 && svd.u.type() == CV_32FC1);
if(covMatType == EM::COV_MAT_SPHERICAL)
{
float maxSingularVal = svd.w.at<float>(0);
covsEigenValues[clusterIndex] = cv::Mat(1, 1, CV_32FC1, cv::Scalar(maxSingularVal));
covsEigenValues[clusterIndex] = Mat(1, 1, CV_32FC1, Scalar(maxSingularVal));
}
else if(covMatType == EM::COV_MAT_DIAGONAL)
{
@ -339,7 +305,7 @@ void EM::decomposeCovs()
covsEigenValues[clusterIndex] = svd.w;
covsRotateMats[clusterIndex] = svd.u;
}
cv::max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]);
max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]);
invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex];
}
}
@ -349,29 +315,29 @@ void EM::clusterTrainSamples()
int nsamples = trainSamples.rows;
// Cluster samples, compute/update means
cv::Mat labels;
cv::kmeans(trainSamples, nclusters, labels,
cv::TermCriteria(cv::TermCriteria::COUNT, means.empty() ? 10 : 1, 0.5),
10, cv::KMEANS_PP_CENTERS, means);
Mat labels;
kmeans(trainSamples, nclusters, labels,
TermCriteria(TermCriteria::COUNT, means.empty() ? 10 : 1, 0.5),
10, KMEANS_PP_CENTERS, means);
CV_Assert(means.type() == CV_32FC1);
// Compute weights and covs
weights = cv::Mat(1, nclusters, CV_32FC1, cv::Scalar(0));
weights = Mat(1, nclusters, CV_32FC1, Scalar(0));
covs.resize(nclusters);
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
{
cv::Mat clusterSamples;
Mat clusterSamples;
for(int sampleIndex = 0; sampleIndex < nsamples; sampleIndex++)
{
if(labels.at<int>(sampleIndex) == clusterIndex)
{
const cv::Mat sample = trainSamples.row(sampleIndex);
const Mat sample = trainSamples.row(sampleIndex);
clusterSamples.push_back(sample);
}
}
CV_Assert(!clusterSamples.empty());
cv::calcCovarMatrix(clusterSamples, covs[clusterIndex], means.row(clusterIndex),
calcCovarMatrix(clusterSamples, covs[clusterIndex], means.row(clusterIndex),
CV_COVAR_NORMAL + CV_COVAR_ROWS + CV_COVAR_USE_AVG + CV_COVAR_SCALE, CV_32FC1);
weights.at<float>(clusterIndex) = static_cast<float>(clusterSamples.rows)/static_cast<float>(nsamples);
}
@ -383,8 +349,8 @@ void EM::computeLogWeightDivDet()
{
CV_Assert(!covsEigenValues.empty());
cv::Mat logWeights;
cv::log(weights, logWeights);
Mat logWeights;
log(weights, logWeights);
logWeightDivDet.create(1, nclusters, CV_32FC1);
// note: logWeightDivDet = log(weight_k) - 0.5 * log(|det(cov_k)|)
@ -399,7 +365,7 @@ void EM::computeLogWeightDivDet()
}
}
bool EM::doTrain(const cv::TermCriteria& termCrit)
bool EM::doTrain(int startStep, OutputArray labels, OutputArray probs, OutputArray likelihoods)
{
int dim = trainSamples.cols;
// Precompute the empty initial train data in the cases of EM::START_E_STEP and START_AUTO_STEP
@ -425,15 +391,15 @@ bool EM::doTrain(const cv::TermCriteria& termCrit)
for(int iter = 0; ; iter++)
{
eStep();
trainLikelihood = cv::sum(trainLikelihoods)[0];
trainLikelihood = sum(trainLikelihoods)[0];
if(iter >= termCrit.maxCount - 1)
if(iter >= maxIters - 1)
break;
double trainLikelihoodDelta = trainLikelihood - (iter > 0 ? prevTrainLikelihood : 0);
if( iter != 0 &&
(trainLikelihoodDelta < -DBL_EPSILON ||
trainLikelihoodDelta < termCrit.epsilon * std::fabs(trainLikelihood)))
trainLikelihoodDelta < epsilon * std::fabs(trainLikelihood)))
break;
mStep();
@ -442,7 +408,10 @@ bool EM::doTrain(const cv::TermCriteria& termCrit)
}
if( trainLikelihood <= -DBL_MAX/10000. )
{
clear();
return false;
}
// postprocess covs
covs.resize(nclusters);
@ -451,16 +420,29 @@ bool EM::doTrain(const cv::TermCriteria& termCrit)
if(covMatType == EM::COV_MAT_SPHERICAL)
{
covs[clusterIndex].create(dim, dim, CV_32FC1);
cv::setIdentity(covs[clusterIndex], cv::Scalar(covsEigenValues[clusterIndex].at<float>(0)));
setIdentity(covs[clusterIndex], Scalar(covsEigenValues[clusterIndex].at<float>(0)));
}
else if(covMatType == EM::COV_MAT_DIAGONAL)
covs[clusterIndex] = cv::Mat::diag(covsEigenValues[clusterIndex].t());
covs[clusterIndex] = Mat::diag(covsEigenValues[clusterIndex].t());
}
if(labels.needed())
trainLabels.copyTo(labels);
if(probs.needed())
trainProbs.copyTo(probs);
if(likelihoods.needed())
trainLikelihoods.copyTo(likelihoods);
trainSamples.release();
trainProbs.release();
trainLabels.release();
trainLikelihoods.release();
trainCounts.release();
return true;
}
void EM::computeProbabilities(const cv::Mat& sample, int& label, cv::Mat* probs, float* likelihood) const
void EM::computeProbabilities(const Mat& sample, int& label, Mat* probs, float* likelihood) const
{
// L_ik = log(weight_k) - 0.5 * log(|det(cov_k)|) - 0.5 *(x_i - mean_k)' cov_k^(-1) (x_i - mean_k)]
// q = arg(max_k(L_ik))
@ -470,15 +452,15 @@ void EM::computeProbabilities(const cv::Mat& sample, int& label, cv::Mat* probs,
int dim = sample.cols;
cv::Mat L(1, nclusters, CV_32FC1);
cv::Mat expL(1, nclusters, CV_32FC1);
Mat L(1, nclusters, CV_32FC1);
Mat expL(1, nclusters, CV_32FC1);
label = 0;
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
{
const cv::Mat centeredSample = sample - means.row(clusterIndex);
const Mat centeredSample = sample - means.row(clusterIndex);
cv::Mat rotatedCenteredSample = covMatType != EM::COV_MAT_GENERIC ?
Mat rotatedCenteredSample = covMatType != EM::COV_MAT_GENERIC ?
centeredSample : centeredSample * covsRotateMats[clusterIndex];
float Lval = 0;
@ -500,7 +482,7 @@ void EM::computeProbabilities(const cv::Mat& sample, int& label, cv::Mat* probs,
return;
// TODO maybe without finding max L value
cv::exp(L, expL);
exp(L, expL);
float partExpSum = 0, // sum_j!=q (exp(L_jk)
factor; // 1/(1 + sum_j!=q (exp(L_jk))
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
@ -510,7 +492,7 @@ void EM::computeProbabilities(const cv::Mat& sample, int& label, cv::Mat* probs,
}
factor = 1.f/(1 + partExpSum);
cv::exp(L - L.at<float>(label), expL);
exp(L - L.at<float>(label), expL);
if(probs)
{
@ -537,7 +519,7 @@ void EM::eStep()
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
{
cv::Mat sampleProbs = trainProbs.row(sampleIndex);
Mat sampleProbs = trainProbs.row(sampleIndex);
computeProbabilities(trainSamples.row(sampleIndex), trainLabels.at<int>(sampleIndex),
&sampleProbs, &trainLikelihoods.at<float>(sampleIndex));
}
@ -546,12 +528,12 @@ void EM::eStep()
void EM::mStep()
{
trainCounts.create(1, nclusters, CV_32SC1);
trainCounts = cv::Scalar(0);
trainCounts = Scalar(0);
for(int sampleIndex = 0; sampleIndex < trainLabels.rows; sampleIndex++)
trainCounts.at<int>(trainLabels.at<int>(sampleIndex))++;
if(cv::countNonZero(trainCounts) != (int)trainCounts.total())
if(countNonZero(trainCounts) != (int)trainCounts.total())
{
clusterTrainSamples();
}
@ -562,14 +544,14 @@ void EM::mStep()
// Update weights
// not normalized first
cv::reduce(trainProbs, weights, 0, CV_REDUCE_SUM);
reduce(trainProbs, weights, 0, CV_REDUCE_SUM);
// Update means
means.create(nclusters, dim, CV_32FC1);
means = cv::Scalar(0);
means = Scalar(0);
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
{
cv::Mat clusterMean = means.row(clusterIndex);
Mat clusterMean = means.row(clusterIndex);
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
clusterMean += trainProbs.at<float>(sampleIndex, clusterIndex) * trainSamples.row(sampleIndex);
clusterMean /= weights.at<float>(clusterIndex);
@ -591,12 +573,12 @@ void EM::mStep()
if(covMatType == EM::COV_MAT_GENERIC)
covs[clusterIndex].create(dim, dim, CV_32FC1);
cv::Mat clusterCov = covMatType != EM::COV_MAT_GENERIC ?
Mat clusterCov = covMatType != EM::COV_MAT_GENERIC ?
covsEigenValues[clusterIndex] : covs[clusterIndex];
clusterCov = cv::Scalar(0);
clusterCov = Scalar(0);
cv::Mat centeredSample;
Mat centeredSample;
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
{
centeredSample = trainSamples.row(sampleIndex) - means.row(clusterIndex);
@ -622,12 +604,12 @@ void EM::mStep()
// Update covsRotateMats for EM::COV_MAT_GENERIC only
if(covMatType == EM::COV_MAT_GENERIC)
{
cv::SVD svd(covs[clusterIndex], cv::SVD::MODIFY_A + cv::SVD::FULL_UV);
SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV);
covsEigenValues[clusterIndex] = svd.w;
covsRotateMats[clusterIndex] = svd.u;
}
cv::max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]);
max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]);
// update invCovsEigenValues
invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex];

View File

@ -320,6 +320,30 @@ void CV_KNearestTest::run( int /*start_from*/ )
ts->set_failed_test_info( code );
}
class EM_Params
{
public:
EM_Params(int nclusters=10, int covMatType=EM::COV_MAT_DIAGONAL, int startStep=EM::START_AUTO_STEP,
const cv::TermCriteria& termCrit=cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 100, FLT_EPSILON),
const cv::Mat* probs=0, const cv::Mat* weights=0,
const cv::Mat* means=0, const std::vector<cv::Mat>* covs=0)
: nclusters(nclusters), covMatType(covMatType), startStep(startStep),
probs(probs), weights(weights), means(means), covs(covs), termCrit(termCrit)
{}
int nclusters;
int covMatType;
int startStep;
// all 4 following matrices should have type CV_32FC1
const cv::Mat* probs;
const cv::Mat* weights;
const cv::Mat* means;
const std::vector<cv::Mat>* covs;
cv::TermCriteria termCrit;
};
//--------------------------------------------------------------------------------------------
class CV_EMTest : public cvtest::BaseTest
{
@ -327,13 +351,13 @@ public:
CV_EMTest() {}
protected:
virtual void run( int start_from );
int runCase( int caseIndex, const cv::EM::Params& params,
int runCase( int caseIndex, const EM_Params& params,
const cv::Mat& trainData, const cv::Mat& trainLabels,
const cv::Mat& testData, const cv::Mat& testLabels,
const vector<int>& sizes);
};
int CV_EMTest::runCase( int caseIndex, const cv::EM::Params& params,
int CV_EMTest::runCase( int caseIndex, const EM_Params& params,
const cv::Mat& trainData, const cv::Mat& trainLabels,
const cv::Mat& testData, const cv::Mat& testLabels,
const vector<int>& sizes )
@ -343,8 +367,13 @@ int CV_EMTest::runCase( int caseIndex, const cv::EM::Params& params,
cv::Mat labels;
float err;
cv::EM em;
em.train( trainData, Mat(), params, &labels );
cv::EM em(params.nclusters, params.covMatType, params.termCrit);
if( params.startStep == EM::START_AUTO_STEP )
em.train( trainData, labels );
else if( params.startStep == EM::START_E_STEP )
em.trainE( trainData, *params.means, *params.covs, *params.weights, labels );
else if( params.startStep == EM::START_M_STEP )
em.trainM( trainData, *params.probs, labels );
// check train error
if( !calcErr( labels, trainLabels, sizes, err , false ) )
@ -363,7 +392,7 @@ int CV_EMTest::runCase( int caseIndex, const cv::EM::Params& params,
for( int i = 0; i < testData.rows; i++ )
{
Mat sample = testData.row(i);
labels.at<int>(i,0) = (int)em.predict( sample, 0 );
labels.at<int>(i,0) = (int)em.predict( sample, noArray() );
}
if( !calcErr( labels, testLabels, sizes, err, false ) )
{
@ -398,7 +427,7 @@ void CV_EMTest::run( int /*start_from*/ )
Mat testData( pointsCount, 2, CV_32FC1 ), testLabels;
generateData( testData, testLabels, sizes, means, covs, CV_32SC1 );
cv::EM::Params params;
EM_Params params;
params.nclusters = 3;
Mat probs(trainData.rows, params.nclusters, CV_32FC1, cv::Scalar(1));
params.probs = &probs;
@ -474,19 +503,16 @@ protected:
virtual void run( int /*start_from*/ )
{
int code = cvtest::TS::OK;
cv::EM em;
cv::EM em(2);
Mat samples = Mat(3,1,CV_32F);
samples.at<float>(0,0) = 1;
samples.at<float>(1,0) = 2;
samples.at<float>(2,0) = 3;
cv::EM::Params params;
params.nclusters = 2;
Mat labels;
em.train(samples, Mat(), params, &labels);
em.train(samples, labels);
Mat firstResult(samples.rows, 1, CV_32FC1);
for( int i = 0; i < samples.rows; i++)