fixed tests (call resetDevice, if there was a gpu failure)
This commit is contained in:
@@ -43,8 +43,6 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
namespace {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Integral
|
||||
|
||||
@@ -64,7 +62,7 @@ PARAM_TEST_CASE(Integral, cv::gpu::DeviceInfo, cv::Size, UseRoi)
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Integral, Accuracy)
|
||||
GPU_TEST_P(Integral, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, CV_8UC1);
|
||||
|
||||
@@ -97,7 +95,7 @@ struct HistEven : testing::TestWithParam<cv::gpu::DeviceInfo>
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(HistEven, Accuracy)
|
||||
GPU_TEST_P(HistEven, Accuracy)
|
||||
{
|
||||
cv::Mat img = readImage("stereobm/aloe-L.png");
|
||||
ASSERT_FALSE(img.empty());
|
||||
@@ -132,18 +130,21 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HistEven, ALL_DEVICES);
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CalcHist
|
||||
|
||||
void calcHistGold(const cv::Mat& src, cv::Mat& hist)
|
||||
namespace
|
||||
{
|
||||
hist.create(1, 256, CV_32SC1);
|
||||
hist.setTo(cv::Scalar::all(0));
|
||||
|
||||
int* hist_row = hist.ptr<int>();
|
||||
for (int y = 0; y < src.rows; ++y)
|
||||
void calcHistGold(const cv::Mat& src, cv::Mat& hist)
|
||||
{
|
||||
const uchar* src_row = src.ptr(y);
|
||||
hist.create(1, 256, CV_32SC1);
|
||||
hist.setTo(cv::Scalar::all(0));
|
||||
|
||||
for (int x = 0; x < src.cols; ++x)
|
||||
++hist_row[src_row[x]];
|
||||
int* hist_row = hist.ptr<int>();
|
||||
for (int y = 0; y < src.rows; ++y)
|
||||
{
|
||||
const uchar* src_row = src.ptr(y);
|
||||
|
||||
for (int x = 0; x < src.cols; ++x)
|
||||
++hist_row[src_row[x]];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -162,7 +163,7 @@ PARAM_TEST_CASE(CalcHist, cv::gpu::DeviceInfo, cv::Size)
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(CalcHist, Accuracy)
|
||||
GPU_TEST_P(CalcHist, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, CV_8UC1);
|
||||
|
||||
@@ -196,7 +197,7 @@ PARAM_TEST_CASE(EqualizeHist, cv::gpu::DeviceInfo, cv::Size)
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(EqualizeHist, Accuracy)
|
||||
GPU_TEST_P(EqualizeHist, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, CV_8UC1);
|
||||
|
||||
@@ -230,7 +231,7 @@ PARAM_TEST_CASE(ColumnSum, cv::gpu::DeviceInfo, cv::Size)
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(ColumnSum, Accuracy)
|
||||
GPU_TEST_P(ColumnSum, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, CV_32FC1);
|
||||
|
||||
@@ -264,8 +265,11 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, ColumnSum, testing::Combine(
|
||||
////////////////////////////////////////////////////////
|
||||
// Canny
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(AppertureSize, int);
|
||||
IMPLEMENT_PARAM_CLASS(L2gradient, bool);
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(AppertureSize, int);
|
||||
IMPLEMENT_PARAM_CLASS(L2gradient, bool);
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, AppertureSize, L2gradient, UseRoi)
|
||||
{
|
||||
@@ -285,7 +289,7 @@ PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, AppertureSize, L2gradient, UseRoi)
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Canny, Accuracy)
|
||||
GPU_TEST_P(Canny, Accuracy)
|
||||
{
|
||||
cv::Mat img = readImage("stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(img.empty());
|
||||
@@ -313,7 +317,7 @@ TEST_P(Canny, Accuracy)
|
||||
cv::Mat edges_gold;
|
||||
cv::Canny(img, edges_gold, low_thresh, high_thresh, apperture_size, useL2gradient);
|
||||
|
||||
EXPECT_MAT_SIMILAR(edges_gold, edges, 1e-2);
|
||||
EXPECT_MAT_SIMILAR(edges_gold, edges, 2e-2);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -349,7 +353,7 @@ struct MeanShift : testing::TestWithParam<cv::gpu::DeviceInfo>
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(MeanShift, Filtering)
|
||||
GPU_TEST_P(MeanShift, Filtering)
|
||||
{
|
||||
cv::Mat img_template;
|
||||
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
|
||||
@@ -371,7 +375,7 @@ TEST_P(MeanShift, Filtering)
|
||||
EXPECT_MAT_NEAR(img_template, result, 0.0);
|
||||
}
|
||||
|
||||
TEST_P(MeanShift, Proc)
|
||||
GPU_TEST_P(MeanShift, Proc)
|
||||
{
|
||||
cv::FileStorage fs;
|
||||
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
|
||||
@@ -402,7 +406,10 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MeanShift, ALL_DEVICES);
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MeanShiftSegmentation
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(MinSize, int);
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(MinSize, int);
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(MeanShiftSegmentation, cv::gpu::DeviceInfo, MinSize)
|
||||
{
|
||||
@@ -418,7 +425,7 @@ PARAM_TEST_CASE(MeanShiftSegmentation, cv::gpu::DeviceInfo, MinSize)
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(MeanShiftSegmentation, Regression)
|
||||
GPU_TEST_P(MeanShiftSegmentation, Regression)
|
||||
{
|
||||
cv::Mat img = readImageType("meanshift/cones.png", CV_8UC4);
|
||||
ASSERT_FALSE(img.empty());
|
||||
@@ -448,26 +455,29 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MeanShiftSegmentation, testing::Combine(
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Blend
|
||||
|
||||
template <typename T>
|
||||
void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold)
|
||||
namespace
|
||||
{
|
||||
result_gold.create(img1.size(), img1.type());
|
||||
|
||||
int cn = img1.channels();
|
||||
|
||||
for (int y = 0; y < img1.rows; ++y)
|
||||
template <typename T>
|
||||
void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold)
|
||||
{
|
||||
const float* weights1_row = weights1.ptr<float>(y);
|
||||
const float* weights2_row = weights2.ptr<float>(y);
|
||||
const T* img1_row = img1.ptr<T>(y);
|
||||
const T* img2_row = img2.ptr<T>(y);
|
||||
T* result_gold_row = result_gold.ptr<T>(y);
|
||||
result_gold.create(img1.size(), img1.type());
|
||||
|
||||
for (int x = 0; x < img1.cols * cn; ++x)
|
||||
int cn = img1.channels();
|
||||
|
||||
for (int y = 0; y < img1.rows; ++y)
|
||||
{
|
||||
float w1 = weights1_row[x / cn];
|
||||
float w2 = weights2_row[x / cn];
|
||||
result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f));
|
||||
const float* weights1_row = weights1.ptr<float>(y);
|
||||
const float* weights2_row = weights2.ptr<float>(y);
|
||||
const T* img1_row = img1.ptr<T>(y);
|
||||
const T* img2_row = img2.ptr<T>(y);
|
||||
T* result_gold_row = result_gold.ptr<T>(y);
|
||||
|
||||
for (int x = 0; x < img1.cols * cn; ++x)
|
||||
{
|
||||
float w1 = weights1_row[x / cn];
|
||||
float w2 = weights2_row[x / cn];
|
||||
result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -490,7 +500,7 @@ PARAM_TEST_CASE(Blend, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Blend, Accuracy)
|
||||
GPU_TEST_P(Blend, Accuracy)
|
||||
{
|
||||
int depth = CV_MAT_DEPTH(type);
|
||||
|
||||
@@ -520,48 +530,51 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Blend, testing::Combine(
|
||||
////////////////////////////////////////////////////////
|
||||
// Convolve
|
||||
|
||||
void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false)
|
||||
namespace
|
||||
{
|
||||
// reallocate the output array if needed
|
||||
C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type());
|
||||
cv::Size dftSize;
|
||||
void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false)
|
||||
{
|
||||
// reallocate the output array if needed
|
||||
C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type());
|
||||
cv::Size dftSize;
|
||||
|
||||
// compute the size of DFT transform
|
||||
dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1);
|
||||
dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1);
|
||||
// compute the size of DFT transform
|
||||
dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1);
|
||||
dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1);
|
||||
|
||||
// allocate temporary buffers and initialize them with 0s
|
||||
cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
|
||||
cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));
|
||||
// allocate temporary buffers and initialize them with 0s
|
||||
cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
|
||||
cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));
|
||||
|
||||
// copy A and B to the top-left corners of tempA and tempB, respectively
|
||||
cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows));
|
||||
A.copyTo(roiA);
|
||||
cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows));
|
||||
B.copyTo(roiB);
|
||||
// copy A and B to the top-left corners of tempA and tempB, respectively
|
||||
cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows));
|
||||
A.copyTo(roiA);
|
||||
cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows));
|
||||
B.copyTo(roiB);
|
||||
|
||||
// now transform the padded A & B in-place;
|
||||
// use "nonzeroRows" hint for faster processing
|
||||
cv::dft(tempA, tempA, 0, A.rows);
|
||||
cv::dft(tempB, tempB, 0, B.rows);
|
||||
// now transform the padded A & B in-place;
|
||||
// use "nonzeroRows" hint for faster processing
|
||||
cv::dft(tempA, tempA, 0, A.rows);
|
||||
cv::dft(tempB, tempB, 0, B.rows);
|
||||
|
||||
// multiply the spectrums;
|
||||
// the function handles packed spectrum representations well
|
||||
cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr);
|
||||
// multiply the spectrums;
|
||||
// the function handles packed spectrum representations well
|
||||
cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr);
|
||||
|
||||
// transform the product back from the frequency domain.
|
||||
// Even though all the result rows will be non-zero,
|
||||
// you need only the first C.rows of them, and thus you
|
||||
// pass nonzeroRows == C.rows
|
||||
cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows);
|
||||
// transform the product back from the frequency domain.
|
||||
// Even though all the result rows will be non-zero,
|
||||
// you need only the first C.rows of them, and thus you
|
||||
// pass nonzeroRows == C.rows
|
||||
cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows);
|
||||
|
||||
// now copy the result back to C.
|
||||
tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C);
|
||||
// now copy the result back to C.
|
||||
tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C);
|
||||
}
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(KSize, int);
|
||||
IMPLEMENT_PARAM_CLASS(Ccorr, bool);
|
||||
}
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(KSize, int);
|
||||
IMPLEMENT_PARAM_CLASS(Ccorr, bool);
|
||||
|
||||
PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, cv::Size, KSize, Ccorr)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
@@ -580,7 +593,7 @@ PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, cv::Size, KSize, Ccorr)
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Convolve, Accuracy)
|
||||
GPU_TEST_P(Convolve, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, CV_32FC1, 0.0, 100.0);
|
||||
cv::Mat kernel = randomMat(cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0);
|
||||
@@ -606,7 +619,10 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Convolve, testing::Combine(
|
||||
CV_ENUM(TemplateMethod, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED)
|
||||
#define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_CCOEFF_NORMED))
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(MatchTemplate8U, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod)
|
||||
{
|
||||
@@ -628,7 +644,7 @@ PARAM_TEST_CASE(MatchTemplate8U, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Ch
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(MatchTemplate8U, Accuracy)
|
||||
GPU_TEST_P(MatchTemplate8U, Accuracy)
|
||||
{
|
||||
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn));
|
||||
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn));
|
||||
@@ -674,7 +690,7 @@ PARAM_TEST_CASE(MatchTemplate32F, cv::gpu::DeviceInfo, cv::Size, TemplateSize, C
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(MatchTemplate32F, Regression)
|
||||
GPU_TEST_P(MatchTemplate32F, Regression)
|
||||
{
|
||||
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn));
|
||||
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn));
|
||||
@@ -712,7 +728,7 @@ PARAM_TEST_CASE(MatchTemplateBlackSource, cv::gpu::DeviceInfo, TemplateMethod)
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(MatchTemplateBlackSource, Accuracy)
|
||||
GPU_TEST_P(MatchTemplateBlackSource, Accuracy)
|
||||
{
|
||||
cv::Mat image = readImage("matchtemplate/black.png");
|
||||
ASSERT_FALSE(image.empty());
|
||||
@@ -757,7 +773,7 @@ PARAM_TEST_CASE(MatchTemplate_CCOEF_NORMED, cv::gpu::DeviceInfo, std::pair<std::
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(MatchTemplate_CCOEF_NORMED, Accuracy)
|
||||
GPU_TEST_P(MatchTemplate_CCOEF_NORMED, Accuracy)
|
||||
{
|
||||
cv::Mat image = readImage(imageName);
|
||||
ASSERT_FALSE(image.empty());
|
||||
@@ -806,7 +822,7 @@ struct MatchTemplate_CanFindBigTemplate : testing::TestWithParam<cv::gpu::Device
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED)
|
||||
GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED)
|
||||
{
|
||||
cv::Mat scene = readImage("matchtemplate/scene.png");
|
||||
ASSERT_FALSE(scene.empty());
|
||||
@@ -829,7 +845,7 @@ TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED)
|
||||
ASSERT_EQ(0, minLoc.y);
|
||||
}
|
||||
|
||||
TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF)
|
||||
GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF)
|
||||
{
|
||||
cv::Mat scene = readImage("matchtemplate/scene.png");
|
||||
ASSERT_FALSE(scene.empty());
|
||||
@@ -879,7 +895,7 @@ PARAM_TEST_CASE(MulSpectrums, cv::gpu::DeviceInfo, cv::Size, DftFlags)
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(MulSpectrums, Simple)
|
||||
GPU_TEST_P(MulSpectrums, Simple)
|
||||
{
|
||||
cv::gpu::GpuMat c;
|
||||
cv::gpu::mulSpectrums(loadMat(a), loadMat(b), c, flag, false);
|
||||
@@ -890,7 +906,7 @@ TEST_P(MulSpectrums, Simple)
|
||||
EXPECT_MAT_NEAR(c_gold, c, 1e-2);
|
||||
}
|
||||
|
||||
TEST_P(MulSpectrums, Scaled)
|
||||
GPU_TEST_P(MulSpectrums, Scaled)
|
||||
{
|
||||
float scale = 1.f / size.area();
|
||||
|
||||
@@ -924,31 +940,34 @@ struct Dft : testing::TestWithParam<cv::gpu::DeviceInfo>
|
||||
}
|
||||
};
|
||||
|
||||
void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace)
|
||||
namespace
|
||||
{
|
||||
SCOPED_TRACE(hint);
|
||||
|
||||
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0);
|
||||
|
||||
cv::Mat b_gold;
|
||||
cv::dft(a, b_gold, flags);
|
||||
|
||||
cv::gpu::GpuMat d_b;
|
||||
cv::gpu::GpuMat d_b_data;
|
||||
if (inplace)
|
||||
void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace)
|
||||
{
|
||||
d_b_data.create(1, a.size().area(), CV_32FC2);
|
||||
d_b = cv::gpu::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
|
||||
}
|
||||
cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), flags);
|
||||
SCOPED_TRACE(hint);
|
||||
|
||||
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
|
||||
ASSERT_EQ(CV_32F, d_b.depth());
|
||||
ASSERT_EQ(2, d_b.channels());
|
||||
EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4);
|
||||
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0);
|
||||
|
||||
cv::Mat b_gold;
|
||||
cv::dft(a, b_gold, flags);
|
||||
|
||||
cv::gpu::GpuMat d_b;
|
||||
cv::gpu::GpuMat d_b_data;
|
||||
if (inplace)
|
||||
{
|
||||
d_b_data.create(1, a.size().area(), CV_32FC2);
|
||||
d_b = cv::gpu::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
|
||||
}
|
||||
cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), flags);
|
||||
|
||||
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
|
||||
ASSERT_EQ(CV_32F, d_b.depth());
|
||||
ASSERT_EQ(2, d_b.channels());
|
||||
EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(Dft, C2C)
|
||||
GPU_TEST_P(Dft, C2C)
|
||||
{
|
||||
int cols = randomInt(2, 100);
|
||||
int rows = randomInt(2, 100);
|
||||
@@ -973,43 +992,46 @@ TEST_P(Dft, C2C)
|
||||
}
|
||||
}
|
||||
|
||||
void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
|
||||
namespace
|
||||
{
|
||||
SCOPED_TRACE(hint);
|
||||
|
||||
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC1, 0.0, 10.0);
|
||||
|
||||
cv::gpu::GpuMat d_b, d_c;
|
||||
cv::gpu::GpuMat d_b_data, d_c_data;
|
||||
if (inplace)
|
||||
void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
|
||||
{
|
||||
if (a.cols == 1)
|
||||
SCOPED_TRACE(hint);
|
||||
|
||||
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC1, 0.0, 10.0);
|
||||
|
||||
cv::gpu::GpuMat d_b, d_c;
|
||||
cv::gpu::GpuMat d_b_data, d_c_data;
|
||||
if (inplace)
|
||||
{
|
||||
d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2);
|
||||
d_b = cv::gpu::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
|
||||
if (a.cols == 1)
|
||||
{
|
||||
d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2);
|
||||
d_b = cv::gpu::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
|
||||
}
|
||||
else
|
||||
{
|
||||
d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2);
|
||||
d_b = cv::gpu::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize());
|
||||
}
|
||||
d_c_data.create(1, a.size().area(), CV_32F);
|
||||
d_c = cv::gpu::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
|
||||
}
|
||||
else
|
||||
{
|
||||
d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2);
|
||||
d_b = cv::gpu::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize());
|
||||
}
|
||||
d_c_data.create(1, a.size().area(), CV_32F);
|
||||
d_c = cv::gpu::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
|
||||
|
||||
cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), 0);
|
||||
cv::gpu::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
|
||||
|
||||
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
|
||||
EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr());
|
||||
ASSERT_EQ(CV_32F, d_c.depth());
|
||||
ASSERT_EQ(1, d_c.channels());
|
||||
|
||||
cv::Mat c(d_c);
|
||||
EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5);
|
||||
}
|
||||
|
||||
cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), 0);
|
||||
cv::gpu::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
|
||||
|
||||
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
|
||||
EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr());
|
||||
ASSERT_EQ(CV_32F, d_c.depth());
|
||||
ASSERT_EQ(1, d_c.channels());
|
||||
|
||||
cv::Mat c(d_c);
|
||||
EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5);
|
||||
}
|
||||
|
||||
TEST_P(Dft, R2CThenC2R)
|
||||
GPU_TEST_P(Dft, R2CThenC2R)
|
||||
{
|
||||
int cols = randomInt(2, 100);
|
||||
int rows = randomInt(2, 100);
|
||||
@@ -1036,8 +1058,11 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Dft, ALL_DEVICES);
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CornerHarris
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(BlockSize, int);
|
||||
IMPLEMENT_PARAM_CLASS(ApertureSize, int);
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(BlockSize, int);
|
||||
IMPLEMENT_PARAM_CLASS(ApertureSize, int);
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, BorderType, BlockSize, ApertureSize)
|
||||
{
|
||||
@@ -1059,7 +1084,7 @@ PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, BorderType, BlockSiz
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(CornerHarris, Accuracy)
|
||||
GPU_TEST_P(CornerHarris, Accuracy)
|
||||
{
|
||||
cv::Mat src = readImageType("stereobm/aloe-L.png", type);
|
||||
ASSERT_FALSE(src.empty());
|
||||
@@ -1105,7 +1130,7 @@ PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, BorderType, BlockS
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(CornerMinEigen, Accuracy)
|
||||
GPU_TEST_P(CornerMinEigen, Accuracy)
|
||||
{
|
||||
cv::Mat src = readImageType("stereobm/aloe-L.png", type);
|
||||
ASSERT_FALSE(src.empty());
|
||||
@@ -1126,6 +1151,4 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerMinEigen, testing::Combine(
|
||||
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)),
|
||||
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7))));
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif // HAVE_CUDA
|
||||
|
Reference in New Issue
Block a user