fixed tests (call resetDevice, if there was a gpu failure)
This commit is contained in:
@@ -43,118 +43,122 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
namespace {
|
||||
|
||||
bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
|
||||
namespace
|
||||
{
|
||||
const double maxPtDif = 1.0;
|
||||
const double maxSizeDif = 1.0;
|
||||
const double maxAngleDif = 2.0;
|
||||
const double maxResponseDif = 0.1;
|
||||
|
||||
double dist = cv::norm(p1.pt - p2.pt);
|
||||
|
||||
if (dist < maxPtDif &&
|
||||
fabs(p1.size - p2.size) < maxSizeDif &&
|
||||
abs(p1.angle - p2.angle) < maxAngleDif &&
|
||||
abs(p1.response - p2.response) < maxResponseDif &&
|
||||
p1.octave == p2.octave &&
|
||||
p1.class_id == p2.class_id)
|
||||
bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
const double maxPtDif = 1.0;
|
||||
const double maxSizeDif = 1.0;
|
||||
const double maxAngleDif = 2.0;
|
||||
const double maxResponseDif = 0.1;
|
||||
|
||||
return false;
|
||||
}
|
||||
double dist = cv::norm(p1.pt - p2.pt);
|
||||
|
||||
struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
|
||||
{
|
||||
bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
|
||||
{
|
||||
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
|
||||
}
|
||||
};
|
||||
|
||||
testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
|
||||
{
|
||||
if (gold.size() != actual.size())
|
||||
{
|
||||
return testing::AssertionFailure() << "KeyPoints size mistmach\n"
|
||||
<< "\"" << gold_expr << "\" : " << gold.size() << "\n"
|
||||
<< "\"" << actual_expr << "\" : " << actual.size();
|
||||
}
|
||||
|
||||
std::sort(actual.begin(), actual.end(), KeyPointLess());
|
||||
std::sort(gold.begin(), gold.end(), KeyPointLess());
|
||||
|
||||
for (size_t i = 0; i < gold.size(); ++i)
|
||||
{
|
||||
const cv::KeyPoint& p1 = gold[i];
|
||||
const cv::KeyPoint& p2 = actual[i];
|
||||
|
||||
if (!keyPointsEquals(p1, p2))
|
||||
if (dist < maxPtDif &&
|
||||
fabs(p1.size - p2.size) < maxSizeDif &&
|
||||
abs(p1.angle - p2.angle) < maxAngleDif &&
|
||||
abs(p1.response - p2.response) < maxResponseDif &&
|
||||
p1.octave == p2.octave &&
|
||||
p1.class_id == p2.class_id)
|
||||
{
|
||||
return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n"
|
||||
<< "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n"
|
||||
<< "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n"
|
||||
<< "size : " << p1.size << " vs " << p2.size << "\n"
|
||||
<< "angle : " << p1.angle << " vs " << p2.angle << "\n"
|
||||
<< "response : " << p1.response << " vs " << p2.response << "\n"
|
||||
<< "octave : " << p1.octave << " vs " << p2.octave << "\n"
|
||||
<< "class_id : " << p1.class_id << " vs " << p2.class_id;
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
return ::testing::AssertionSuccess();
|
||||
}
|
||||
|
||||
#define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual);
|
||||
|
||||
int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
|
||||
{
|
||||
std::sort(actual.begin(), actual.end(), KeyPointLess());
|
||||
std::sort(gold.begin(), gold.end(), KeyPointLess());
|
||||
|
||||
int validCount = 0;
|
||||
|
||||
for (size_t i = 0; i < gold.size(); ++i)
|
||||
struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
|
||||
{
|
||||
const cv::KeyPoint& p1 = gold[i];
|
||||
const cv::KeyPoint& p2 = actual[i];
|
||||
bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
|
||||
{
|
||||
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
|
||||
}
|
||||
};
|
||||
|
||||
if (keyPointsEquals(p1, p2))
|
||||
++validCount;
|
||||
}
|
||||
|
||||
return validCount;
|
||||
}
|
||||
|
||||
int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
|
||||
{
|
||||
int validCount = 0;
|
||||
|
||||
for (size_t i = 0; i < matches.size(); ++i)
|
||||
testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
|
||||
{
|
||||
const cv::DMatch& m = matches[i];
|
||||
if (gold.size() != actual.size())
|
||||
{
|
||||
return testing::AssertionFailure() << "KeyPoints size mistmach\n"
|
||||
<< "\"" << gold_expr << "\" : " << gold.size() << "\n"
|
||||
<< "\"" << actual_expr << "\" : " << actual.size();
|
||||
}
|
||||
|
||||
const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
|
||||
const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
|
||||
std::sort(actual.begin(), actual.end(), KeyPointLess());
|
||||
std::sort(gold.begin(), gold.end(), KeyPointLess());
|
||||
|
||||
if (keyPointsEquals(p1, p2))
|
||||
++validCount;
|
||||
for (size_t i = 0; i < gold.size(); ++i)
|
||||
{
|
||||
const cv::KeyPoint& p1 = gold[i];
|
||||
const cv::KeyPoint& p2 = actual[i];
|
||||
|
||||
if (!keyPointsEquals(p1, p2))
|
||||
{
|
||||
return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n"
|
||||
<< "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n"
|
||||
<< "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n"
|
||||
<< "size : " << p1.size << " vs " << p2.size << "\n"
|
||||
<< "angle : " << p1.angle << " vs " << p2.angle << "\n"
|
||||
<< "response : " << p1.response << " vs " << p2.response << "\n"
|
||||
<< "octave : " << p1.octave << " vs " << p2.octave << "\n"
|
||||
<< "class_id : " << p1.class_id << " vs " << p2.class_id;
|
||||
}
|
||||
}
|
||||
|
||||
return ::testing::AssertionSuccess();
|
||||
}
|
||||
|
||||
return validCount;
|
||||
#define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual);
|
||||
|
||||
int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
|
||||
{
|
||||
std::sort(actual.begin(), actual.end(), KeyPointLess());
|
||||
std::sort(gold.begin(), gold.end(), KeyPointLess());
|
||||
|
||||
int validCount = 0;
|
||||
|
||||
for (size_t i = 0; i < gold.size(); ++i)
|
||||
{
|
||||
const cv::KeyPoint& p1 = gold[i];
|
||||
const cv::KeyPoint& p2 = actual[i];
|
||||
|
||||
if (keyPointsEquals(p1, p2))
|
||||
++validCount;
|
||||
}
|
||||
|
||||
return validCount;
|
||||
}
|
||||
|
||||
int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
|
||||
{
|
||||
int validCount = 0;
|
||||
|
||||
for (size_t i = 0; i < matches.size(); ++i)
|
||||
{
|
||||
const cv::DMatch& m = matches[i];
|
||||
|
||||
const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
|
||||
const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
|
||||
|
||||
if (keyPointsEquals(p1, p2))
|
||||
++validCount;
|
||||
}
|
||||
|
||||
return validCount;
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// SURF
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(SURF_HessianThreshold, double)
|
||||
IMPLEMENT_PARAM_CLASS(SURF_Octaves, int)
|
||||
IMPLEMENT_PARAM_CLASS(SURF_OctaveLayers, int)
|
||||
IMPLEMENT_PARAM_CLASS(SURF_Extended, bool)
|
||||
IMPLEMENT_PARAM_CLASS(SURF_Upright, bool)
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(SURF_HessianThreshold, double)
|
||||
IMPLEMENT_PARAM_CLASS(SURF_Octaves, int)
|
||||
IMPLEMENT_PARAM_CLASS(SURF_OctaveLayers, int)
|
||||
IMPLEMENT_PARAM_CLASS(SURF_Extended, bool)
|
||||
IMPLEMENT_PARAM_CLASS(SURF_Upright, bool)
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(SURF, cv::gpu::DeviceInfo, SURF_HessianThreshold, SURF_Octaves, SURF_OctaveLayers, SURF_Extended, SURF_Upright)
|
||||
{
|
||||
@@ -178,7 +182,7 @@ PARAM_TEST_CASE(SURF, cv::gpu::DeviceInfo, SURF_HessianThreshold, SURF_Octaves,
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(SURF, Detector)
|
||||
GPU_TEST_P(SURF, Detector)
|
||||
{
|
||||
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(image.empty());
|
||||
@@ -226,7 +230,7 @@ TEST_P(SURF, Detector)
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(SURF, Detector_Masked)
|
||||
GPU_TEST_P(SURF, Detector_Masked)
|
||||
{
|
||||
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(image.empty());
|
||||
@@ -277,7 +281,7 @@ TEST_P(SURF, Detector_Masked)
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(SURF, Descriptor)
|
||||
GPU_TEST_P(SURF, Descriptor)
|
||||
{
|
||||
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(image.empty());
|
||||
@@ -328,7 +332,7 @@ TEST_P(SURF, Descriptor)
|
||||
int matchedCount = getMatchedPointsCount(keypoints, keypoints, matches);
|
||||
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
|
||||
|
||||
EXPECT_GT(matchedRatio, 0.35);
|
||||
EXPECT_GT(matchedRatio, 0.6);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -343,8 +347,11 @@ INSTANTIATE_TEST_CASE_P(GPU_Features2D, SURF, testing::Combine(
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// FAST
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(FAST_Threshold, int)
|
||||
IMPLEMENT_PARAM_CLASS(FAST_NonmaxSupression, bool)
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(FAST_Threshold, int)
|
||||
IMPLEMENT_PARAM_CLASS(FAST_NonmaxSupression, bool)
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(FAST, cv::gpu::DeviceInfo, FAST_Threshold, FAST_NonmaxSupression)
|
||||
{
|
||||
@@ -362,7 +369,7 @@ PARAM_TEST_CASE(FAST, cv::gpu::DeviceInfo, FAST_Threshold, FAST_NonmaxSupression
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(FAST, Accuracy)
|
||||
GPU_TEST_P(FAST, Accuracy)
|
||||
{
|
||||
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(image.empty());
|
||||
@@ -402,14 +409,17 @@ INSTANTIATE_TEST_CASE_P(GPU_Features2D, FAST, testing::Combine(
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// ORB
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int)
|
||||
IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float)
|
||||
IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int)
|
||||
IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int)
|
||||
IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int)
|
||||
IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int)
|
||||
IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int)
|
||||
IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool)
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int)
|
||||
IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float)
|
||||
IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int)
|
||||
IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int)
|
||||
IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int)
|
||||
IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int)
|
||||
IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int)
|
||||
IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool)
|
||||
}
|
||||
|
||||
CV_ENUM(ORB_ScoreType, cv::ORB::HARRIS_SCORE, cv::ORB::FAST_SCORE)
|
||||
|
||||
@@ -443,7 +453,7 @@ PARAM_TEST_CASE(ORB, cv::gpu::DeviceInfo, ORB_FeaturesCount, ORB_ScaleFactor, OR
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(ORB, Accuracy)
|
||||
GPU_TEST_P(ORB, Accuracy)
|
||||
{
|
||||
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(image.empty());
|
||||
@@ -505,8 +515,11 @@ INSTANTIATE_TEST_CASE_P(GPU_Features2D, ORB, testing::Combine(
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// BruteForceMatcher
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
|
||||
IMPLEMENT_PARAM_CLASS(UseMask, bool)
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
|
||||
IMPLEMENT_PARAM_CLASS(UseMask, bool)
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(BruteForceMatcher, cv::gpu::DeviceInfo, NormCode, DescriptorSize, UseMask)
|
||||
{
|
||||
@@ -568,7 +581,7 @@ PARAM_TEST_CASE(BruteForceMatcher, cv::gpu::DeviceInfo, NormCode, DescriptorSize
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(BruteForceMatcher, Match_Single)
|
||||
GPU_TEST_P(BruteForceMatcher, Match_Single)
|
||||
{
|
||||
cv::gpu::BruteForceMatcher_GPU_base matcher(
|
||||
cv::gpu::BruteForceMatcher_GPU_base::DistType((normCode -2) / 2));
|
||||
@@ -596,7 +609,7 @@ TEST_P(BruteForceMatcher, Match_Single)
|
||||
ASSERT_EQ(0, badCount);
|
||||
}
|
||||
|
||||
TEST_P(BruteForceMatcher, Match_Collection)
|
||||
GPU_TEST_P(BruteForceMatcher, Match_Collection)
|
||||
{
|
||||
cv::gpu::BruteForceMatcher_GPU_base matcher(
|
||||
cv::gpu::BruteForceMatcher_GPU_base::DistType((normCode -2) / 2));
|
||||
@@ -651,7 +664,7 @@ TEST_P(BruteForceMatcher, Match_Collection)
|
||||
ASSERT_EQ(0, badCount);
|
||||
}
|
||||
|
||||
TEST_P(BruteForceMatcher, KnnMatch_2_Single)
|
||||
GPU_TEST_P(BruteForceMatcher, KnnMatch_2_Single)
|
||||
{
|
||||
cv::gpu::BruteForceMatcher_GPU_base matcher(
|
||||
cv::gpu::BruteForceMatcher_GPU_base::DistType((normCode -2) / 2));
|
||||
@@ -691,7 +704,7 @@ TEST_P(BruteForceMatcher, KnnMatch_2_Single)
|
||||
ASSERT_EQ(0, badCount);
|
||||
}
|
||||
|
||||
TEST_P(BruteForceMatcher, KnnMatch_3_Single)
|
||||
GPU_TEST_P(BruteForceMatcher, KnnMatch_3_Single)
|
||||
{
|
||||
cv::gpu::BruteForceMatcher_GPU_base matcher(
|
||||
cv::gpu::BruteForceMatcher_GPU_base::DistType((normCode -2) / 2));
|
||||
@@ -731,7 +744,7 @@ TEST_P(BruteForceMatcher, KnnMatch_3_Single)
|
||||
ASSERT_EQ(0, badCount);
|
||||
}
|
||||
|
||||
TEST_P(BruteForceMatcher, KnnMatch_2_Collection)
|
||||
GPU_TEST_P(BruteForceMatcher, KnnMatch_2_Collection)
|
||||
{
|
||||
cv::gpu::BruteForceMatcher_GPU_base matcher(
|
||||
cv::gpu::BruteForceMatcher_GPU_base::DistType((normCode -2) / 2));
|
||||
@@ -794,7 +807,7 @@ TEST_P(BruteForceMatcher, KnnMatch_2_Collection)
|
||||
ASSERT_EQ(0, badCount);
|
||||
}
|
||||
|
||||
TEST_P(BruteForceMatcher, KnnMatch_3_Collection)
|
||||
GPU_TEST_P(BruteForceMatcher, KnnMatch_3_Collection)
|
||||
{
|
||||
cv::gpu::BruteForceMatcher_GPU_base matcher(
|
||||
cv::gpu::BruteForceMatcher_GPU_base::DistType((normCode -2) / 2));
|
||||
@@ -857,7 +870,7 @@ TEST_P(BruteForceMatcher, KnnMatch_3_Collection)
|
||||
ASSERT_EQ(0, badCount);
|
||||
}
|
||||
|
||||
TEST_P(BruteForceMatcher, RadiusMatch_Single)
|
||||
GPU_TEST_P(BruteForceMatcher, RadiusMatch_Single)
|
||||
{
|
||||
cv::gpu::BruteForceMatcher_GPU_base matcher(
|
||||
cv::gpu::BruteForceMatcher_GPU_base::DistType((normCode -2) / 2));
|
||||
@@ -907,7 +920,7 @@ TEST_P(BruteForceMatcher, RadiusMatch_Single)
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(BruteForceMatcher, RadiusMatch_Collection)
|
||||
GPU_TEST_P(BruteForceMatcher, RadiusMatch_Collection)
|
||||
{
|
||||
cv::gpu::BruteForceMatcher_GPU_base matcher(
|
||||
cv::gpu::BruteForceMatcher_GPU_base::DistType((normCode -2) / 2));
|
||||
@@ -993,6 +1006,4 @@ INSTANTIATE_TEST_CASE_P(GPU_Features2D, BruteForceMatcher, testing::Combine(
|
||||
testing::Values(DescriptorSize(57), DescriptorSize(64), DescriptorSize(83), DescriptorSize(128), DescriptorSize(179), DescriptorSize(256), DescriptorSize(304)),
|
||||
testing::Values(UseMask(false), UseMask(true))));
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif // HAVE_CUDA
|
||||
|
Reference in New Issue
Block a user