Bugfix brute_force_match.cl (Bug ): wrong results for non-float descriptors in OpenCL BruteForceMatcher

This commit is contained in:
WilhelmHannemann 2014-09-19 16:31:11 +02:00
parent 0cf1de8eea
commit b767613d20

@ -179,7 +179,7 @@ __kernel void BruteForceMatch_UnrollMatch(
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++) for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)
{ {
int loadx = lidx + i * BLOCK_SIZE; int loadx = lidx + i * BLOCK_SIZE;
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx] : 0;
} }
float myBestDistance = MAX_FLOAT; float myBestDistance = MAX_FLOAT;
@ -194,7 +194,7 @@ __kernel void BruteForceMatch_UnrollMatch(
{ {
//load a BLOCK_SIZE * BLOCK_SIZE block into local train. //load a BLOCK_SIZE * BLOCK_SIZE block into local train.
const int loadx = lidx + i * BLOCK_SIZE; const int loadx = lidx + i * BLOCK_SIZE;
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx] : 0;
//synchronize to make sure each elem for reduceIteration in share memory is written already. //synchronize to make sure each elem for reduceIteration in share memory is written already.
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
@ -284,8 +284,8 @@ __kernel void BruteForceMatch_Match(
if (loadx < query_cols) if (loadx < query_cols)
{ {
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx]; s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx];
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx]; s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx];
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
@ -372,8 +372,8 @@ __kernel void BruteForceMatch_RadiusUnrollMatch(
//load a BLOCK_SIZE * BLOCK_SIZE block into local train. //load a BLOCK_SIZE * BLOCK_SIZE block into local train.
const int loadx = lidx + i * BLOCK_SIZE; const int loadx = lidx + i * BLOCK_SIZE;
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx] : 0;
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx] : 0;
//synchronize to make sure each elem for reduceIteration in share memory is written already. //synchronize to make sure each elem for reduceIteration in share memory is written already.
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
@ -432,8 +432,8 @@ __kernel void BruteForceMatch_RadiusMatch(
//load a BLOCK_SIZE * BLOCK_SIZE block into local train. //load a BLOCK_SIZE * BLOCK_SIZE block into local train.
const int loadx = lidx + i * BLOCK_SIZE; const int loadx = lidx + i * BLOCK_SIZE;
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx] : 0;
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx] : 0;
//synchronize to make sure each elem for reduceIteration in share memory is written already. //synchronize to make sure each elem for reduceIteration in share memory is written already.
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
@ -483,7 +483,7 @@ __kernel void BruteForceMatch_knnUnrollMatch(
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++) for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)
{ {
int loadx = lidx + i * BLOCK_SIZE; int loadx = lidx + i * BLOCK_SIZE;
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx] : 0;
} }
float myBestDistance1 = MAX_FLOAT; float myBestDistance1 = MAX_FLOAT;
@ -499,7 +499,7 @@ __kernel void BruteForceMatch_knnUnrollMatch(
{ {
//load a BLOCK_SIZE * BLOCK_SIZE block into local train. //load a BLOCK_SIZE * BLOCK_SIZE block into local train.
const int loadx = lidx + i * BLOCK_SIZE; const int loadx = lidx + i * BLOCK_SIZE;
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx] : 0;
//synchronize to make sure each elem for reduceIteration in share memory is written already. //synchronize to make sure each elem for reduceIteration in share memory is written already.
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
@ -643,8 +643,8 @@ __kernel void BruteForceMatch_knnMatch(
if (loadx < query_cols) if (loadx < query_cols)
{ {
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx]; s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx];
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx]; s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx];
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);