Fixed several warnings on various platforms
This commit is contained in:
@@ -47,7 +47,7 @@ static void sortMatrixRowsByIndices(InputArray _src, InputArray _indices, Output
|
||||
Mat dst = _dst.getMat();
|
||||
for(size_t idx = 0; idx < indices.size(); idx++) {
|
||||
Mat originalRow = src.row(indices[idx]);
|
||||
Mat sortedRow = dst.row(idx);
|
||||
Mat sortedRow = dst.row((int)idx);
|
||||
originalRow.copyTo(sortedRow);
|
||||
}
|
||||
}
|
||||
@@ -127,8 +127,9 @@ static Mat interp1(InputArray _x, InputArray _Y, InputArray _xi)
|
||||
case CV_32SC1: return interp1_<int>(x,Y,xi); break;
|
||||
case CV_32FC1: return interp1_<float>(x,Y,xi); break;
|
||||
case CV_64FC1: return interp1_<double>(x,Y,xi); break;
|
||||
default: CV_Error(CV_StsUnsupportedFormat, ""); return Mat();
|
||||
default: CV_Error(CV_StsUnsupportedFormat, ""); break;
|
||||
}
|
||||
return Mat();
|
||||
}
|
||||
|
||||
namespace colormap
|
||||
|
@@ -384,7 +384,7 @@ void Fisherfaces::train(InputArray src, InputArray _lbls) {
|
||||
if(labels.size() != (size_t)N)
|
||||
CV_Error(CV_StsUnsupportedFormat, "Labels must be given as integer (CV_32SC1).");
|
||||
// compute the Fisherfaces
|
||||
int C = remove_dups(labels).size(); // number of unique classes
|
||||
int C = (int)remove_dups(labels).size(); // number of unique classes
|
||||
// clip number of components to be a valid number
|
||||
if((_num_components <= 0) || (_num_components > (C-1)))
|
||||
_num_components = (C-1);
|
||||
@@ -549,7 +549,7 @@ histc_(const Mat& src, int minVal=0, int maxVal=255, bool normed=false)
|
||||
calcHist(&src, 1, 0, Mat(), result, 1, &histSize, &histRange, true, false);
|
||||
// normalize
|
||||
if(normed) {
|
||||
result /= src.total();
|
||||
result /= (int)src.total();
|
||||
}
|
||||
return result.reshape(1,1);
|
||||
}
|
||||
|
@@ -62,7 +62,7 @@ static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double
|
||||
if(n == 0)
|
||||
return Mat();
|
||||
// dimensionality of samples
|
||||
int d = src.getMat(0).total();
|
||||
int d = (int)src.getMat(0).total();
|
||||
// create data matrix
|
||||
Mat data(n, d, rtype);
|
||||
// copy data
|
||||
@@ -82,7 +82,7 @@ void sortMatrixColumnsByIndices(InputArray _src, InputArray _indices, OutputArra
|
||||
Mat dst = _dst.getMat();
|
||||
for(size_t idx = 0; idx < indices.size(); idx++) {
|
||||
Mat originalCol = src.col(indices[idx]);
|
||||
Mat sortedCol = dst.col(idx);
|
||||
Mat sortedCol = dst.col((int)idx);
|
||||
originalCol.copyTo(sortedCol);
|
||||
}
|
||||
}
|
||||
@@ -947,14 +947,14 @@ void LDA::lda(InputArray _src, InputArray _lbls) {
|
||||
vector<int> num2label = remove_dups(labels);
|
||||
map<int, int> label2num;
|
||||
for (size_t i = 0; i < num2label.size(); i++)
|
||||
label2num[num2label[i]] = i;
|
||||
label2num[num2label[i]] = (int)i;
|
||||
for (size_t i = 0; i < labels.size(); i++)
|
||||
mapped_labels[i] = label2num[labels[i]];
|
||||
// get sample size, dimension
|
||||
int N = data.rows;
|
||||
int D = data.cols;
|
||||
// number of unique labels
|
||||
int C = num2label.size();
|
||||
int C = (int)num2label.size();
|
||||
// throw error if less labels, than samples
|
||||
if (labels.size() != (size_t)N)
|
||||
CV_Error(CV_StsBadArg, "Error: The number of samples must equal the number of labels.");
|
||||
|
@@ -1171,7 +1171,7 @@ private:
|
||||
break;
|
||||
|
||||
std::transform(left.begin(), left.end(), buf_beg, WgcHelper(group, groupingMat));
|
||||
int minInd = min_element(buf_beg, buf_beg + left_size) - buf_beg;
|
||||
size_t minInd = min_element(buf_beg, buf_beg + left_size) - buf_beg;
|
||||
|
||||
if (buf[minInd] < model.T_GroupingCorespondances) /* can add corespondance to group */
|
||||
{
|
||||
|
Reference in New Issue
Block a user