new API for StereoMatchers

This commit is contained in:
Vadim Pisarevsky
2013-03-01 02:24:46 +04:00
parent 891d7da6ee
commit b6efe30527
4 changed files with 657 additions and 393 deletions

View File

@@ -12,6 +12,7 @@
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
@@ -61,42 +62,52 @@ typedef short DispType;
enum { NR = 16, NR2 = NR/2 };
StereoSGBM::StereoSGBM()
struct StereoSGBMParams
{
minDisparity = numberOfDisparities = 0;
SADWindowSize = 0;
P1 = P2 = 0;
disp12MaxDiff = 0;
preFilterCap = 0;
uniquenessRatio = 0;
speckleWindowSize = 0;
speckleRange = 0;
fullDP = false;
}
StereoSGBMParams()
{
minDisparity = numDisparities = 0;
SADWindowSize = 0;
P1 = P2 = 0;
disp12MaxDiff = 0;
preFilterCap = 0;
uniquenessRatio = 0;
speckleWindowSize = 0;
speckleRange = 0;
fullDP = false;
}
StereoSGBMParams( int _minDisparity, int _numDisparities, int _SADWindowSize,
int _P1, int _P2, int _disp12MaxDiff, int _preFilterCap,
int _uniquenessRatio, int _speckleWindowSize, int _speckleRange,
bool _fullDP )
{
minDisparity = _minDisparity;
numDisparities = _numDisparities;
SADWindowSize = _SADWindowSize;
P1 = _P1;
P2 = _P2;
disp12MaxDiff = _disp12MaxDiff;
preFilterCap = _preFilterCap;
uniquenessRatio = _uniquenessRatio;
speckleWindowSize = _speckleWindowSize;
speckleRange = _speckleRange;
fullDP = _fullDP;
}
StereoSGBM::StereoSGBM( int _minDisparity, int _numDisparities, int _SADWindowSize,
int _P1, int _P2, int _disp12MaxDiff, int _preFilterCap,
int _uniquenessRatio, int _speckleWindowSize, int _speckleRange,
bool _fullDP )
{
minDisparity = _minDisparity;
numberOfDisparities = _numDisparities;
SADWindowSize = _SADWindowSize;
P1 = _P1;
P2 = _P2;
disp12MaxDiff = _disp12MaxDiff;
preFilterCap = _preFilterCap;
uniquenessRatio = _uniquenessRatio;
speckleWindowSize = _speckleWindowSize;
speckleRange = _speckleRange;
fullDP = _fullDP;
}
StereoSGBM::~StereoSGBM()
{
}
int minDisparity;
int numDisparities;
int SADWindowSize;
int preFilterCap;
int uniquenessRatio;
int P1;
int P2;
int speckleWindowSize;
int speckleRange;
int disp12MaxDiff;
bool fullDP;
};
/*
For each pixel row1[x], max(-maxD, 0) <= minX <= x < maxX <= width - max(0, -minD),
@@ -289,7 +300,7 @@ static void calcPixelCostBT( const Mat& img1, const Mat& img2, int y,
final after all the tiles are processed.
the disparity in disp1buf is written with sub-pixel accuracy
(4 fractional bits, see CvStereoSGBM::DISP_SCALE),
(4 fractional bits, see StereoSGBM::DISP_SCALE),
using quadratic interpolation, while the disparity in disp2buf
is written as is, without interpolation.
@@ -297,7 +308,7 @@ static void calcPixelCostBT( const Mat& img1, const Mat& img2, int y,
It contains the minimum current cost, used to find the best disparity, corresponding to the minimal cost.
*/
static void computeDisparitySGBM( const Mat& img1, const Mat& img2,
Mat& disp1, const StereoSGBM& params,
Mat& disp1, const StereoSGBMParams& params,
Mat& buffer )
{
#if CV_SSE2
@@ -321,7 +332,7 @@ static void computeDisparitySGBM( const Mat& img1, const Mat& img2,
const int DISP_SCALE = StereoSGBM::DISP_SCALE;
const CostType MAX_COST = SHRT_MAX;
int minD = params.minDisparity, maxD = minD + params.numberOfDisparities;
int minD = params.minDisparity, maxD = minD + params.numDisparities;
Size SADWindowSize;
SADWindowSize.width = SADWindowSize.height = params.SADWindowSize > 0 ? params.SADWindowSize : 5;
int ftzero = std::max(params.preFilterCap, 15) | 1;
@@ -817,26 +828,80 @@ static void computeDisparitySGBM( const Mat& img1, const Mat& img2,
}
}
typedef cv::Point_<short> Point2s;
void StereoSGBM::operator ()( InputArray _left, InputArray _right,
OutputArray _disp )
class StereoSGBMImpl : public StereoMatcher
{
Mat left = _left.getMat(), right = _right.getMat();
CV_Assert( left.size() == right.size() && left.type() == right.type() &&
left.depth() == DataType<PixType>::depth );
public:
StereoSGBMImpl()
{
params = StereoSGBMParams();
}
_disp.create( left.size(), CV_16S );
Mat disp = _disp.getMat();
StereoSGBMImpl( int _minDisparity, int _numDisparities, int _SADWindowSize,
int _P1, int _P2, int _disp12MaxDiff, int _preFilterCap,
int _uniquenessRatio, int _speckleWindowSize, int _speckleRange,
bool _fullDP )
{
params = StereoSGBMParams( _minDisparity, _numDisparities, _SADWindowSize,
_P1, _P2, _disp12MaxDiff, _preFilterCap,
_uniquenessRatio, _speckleWindowSize, _speckleRange,
_fullDP );
}
computeDisparitySGBM( left, right, disp, *this, buffer );
medianBlur(disp, disp, 3);
void compute( InputArray leftarr, InputArray rightarr, OutputArray disparr )
{
Mat left = leftarr.getMat(), right = rightarr.getMat();
CV_Assert( left.size() == right.size() && left.type() == right.type() &&
left.depth() == CV_8U );
if( speckleWindowSize > 0 )
filterSpeckles(disp, (minDisparity - 1)*DISP_SCALE, speckleWindowSize, DISP_SCALE*speckleRange, buffer);
disparr.create( left.size(), CV_16S );
Mat disp = disparr.getMat();
computeDisparitySGBM( left, right, disp, params, buffer );
medianBlur(disp, disp, 3);
if( params.speckleWindowSize > 0 )
filterSpeckles(disp, (params.minDisparity - 1)*STEREO_DISP_SCALE, params.speckleWindowSize,
STEREO_DISP_SCALE*params.speckleRange, buffer);
}
AlgorithmInfo* info() const;
StereoSGBMParams params;
Mat buffer;
};
Ptr<StereoMatcher> createStereoSGBM(int minDisparity, int numDisparities, int SADWindowSize,
int P1, int P2, int disp12MaxDiff,
int preFilterCap, int uniquenessRatio,
int speckleWindowSize, int speckleRange,
bool fullDP)
{
return new StereoSGBMImpl(minDisparity, numDisparities, SADWindowSize,
P1, P2, disp12MaxDiff,
preFilterCap, uniquenessRatio,
speckleWindowSize, speckleRange,
fullDP);
}
#define add_param(n) \
obj.info()->addParam(obj, #n, obj.params.n)
CV_INIT_ALGORITHM(StereoSGBMImpl, "StereoMatcher.SGBM",
add_param(minDisparity);
add_param(numDisparities);
add_param(SADWindowSize);
add_param(preFilterCap);
add_param(uniquenessRatio);
add_param(P1);
add_param(P2);
add_param(speckleWindowSize);
add_param(speckleRange);
add_param(disp12MaxDiff);
add_param(fullDP));
Rect getValidDisparityROI( Rect roi1, Rect roi2,
int minDisparity,
int numberOfDisparities,
@@ -855,108 +920,107 @@ Rect getValidDisparityROI( Rect roi1, Rect roi2,
return r.width > 0 && r.height > 0 ? r : Rect();
}
}
typedef cv::Point_<short> Point2s;
namespace
template <typename T>
void filterSpecklesImpl(cv::Mat& img, int newVal, int maxSpeckleSize, int maxDiff, cv::Mat& _buf)
{
template <typename T>
void filterSpecklesImpl(cv::Mat& img, int newVal, int maxSpeckleSize, int maxDiff, cv::Mat& _buf)
using namespace cv;
int width = img.cols, height = img.rows, npixels = width*height;
size_t bufSize = npixels*(int)(sizeof(Point2s) + sizeof(int) + sizeof(uchar));
if( !_buf.isContinuous() || !_buf.data || _buf.cols*_buf.rows*_buf.elemSize() < bufSize )
_buf.create(1, (int)bufSize, CV_8U);
uchar* buf = _buf.data;
int i, j, dstep = (int)(img.step/sizeof(T));
int* labels = (int*)buf;
buf += npixels*sizeof(labels[0]);
Point2s* wbuf = (Point2s*)buf;
buf += npixels*sizeof(wbuf[0]);
uchar* rtype = (uchar*)buf;
int curlabel = 0;
// clear out label assignments
memset(labels, 0, npixels*sizeof(labels[0]));
for( i = 0; i < height; i++ )
{
using namespace cv;
T* ds = img.ptr<T>(i);
int* ls = labels + width*i;
int width = img.cols, height = img.rows, npixels = width*height;
size_t bufSize = npixels*(int)(sizeof(Point2s) + sizeof(int) + sizeof(uchar));
if( !_buf.isContinuous() || !_buf.data || _buf.cols*_buf.rows*_buf.elemSize() < bufSize )
_buf.create(1, (int)bufSize, CV_8U);
uchar* buf = _buf.data;
int i, j, dstep = (int)(img.step/sizeof(T));
int* labels = (int*)buf;
buf += npixels*sizeof(labels[0]);
Point2s* wbuf = (Point2s*)buf;
buf += npixels*sizeof(wbuf[0]);
uchar* rtype = (uchar*)buf;
int curlabel = 0;
// clear out label assignments
memset(labels, 0, npixels*sizeof(labels[0]));
for( i = 0; i < height; i++ )
for( j = 0; j < width; j++ )
{
T* ds = img.ptr<T>(i);
int* ls = labels + width*i;
for( j = 0; j < width; j++ )
if( ds[j] != newVal ) // not a bad disparity
{
if( ds[j] != newVal ) // not a bad disparity
if( ls[j] ) // has a label, check for bad label
{
if( ls[j] ) // has a label, check for bad label
if( rtype[ls[j]] ) // small region, zero out disparity
ds[j] = (T)newVal;
}
// no label, assign and propagate
else
{
Point2s* ws = wbuf; // initialize wavefront
Point2s p((short)j, (short)i); // current pixel
curlabel++; // next label
int count = 0; // current region size
ls[j] = curlabel;
// wavefront propagation
while( ws >= wbuf ) // wavefront not empty
{
if( rtype[ls[j]] ) // small region, zero out disparity
ds[j] = (T)newVal;
count++;
// put neighbors onto wavefront
T* dpp = &img.at<T>(p.y, p.x);
T dp = *dpp;
int* lpp = labels + width*p.y + p.x;
if( p.x < width-1 && !lpp[+1] && dpp[+1] != newVal && std::abs(dp - dpp[+1]) <= maxDiff )
{
lpp[+1] = curlabel;
*ws++ = Point2s(p.x+1, p.y);
}
if( p.x > 0 && !lpp[-1] && dpp[-1] != newVal && std::abs(dp - dpp[-1]) <= maxDiff )
{
lpp[-1] = curlabel;
*ws++ = Point2s(p.x-1, p.y);
}
if( p.y < height-1 && !lpp[+width] && dpp[+dstep] != newVal && std::abs(dp - dpp[+dstep]) <= maxDiff )
{
lpp[+width] = curlabel;
*ws++ = Point2s(p.x, p.y+1);
}
if( p.y > 0 && !lpp[-width] && dpp[-dstep] != newVal && std::abs(dp - dpp[-dstep]) <= maxDiff )
{
lpp[-width] = curlabel;
*ws++ = Point2s(p.x, p.y-1);
}
// pop most recent and propagate
// NB: could try least recent, maybe better convergence
p = *--ws;
}
// assign label type
if( count <= maxSpeckleSize ) // speckle region
{
rtype[ls[j]] = 1; // small region label
ds[j] = (T)newVal;
}
// no label, assign and propagate
else
{
Point2s* ws = wbuf; // initialize wavefront
Point2s p((short)j, (short)i); // current pixel
curlabel++; // next label
int count = 0; // current region size
ls[j] = curlabel;
// wavefront propagation
while( ws >= wbuf ) // wavefront not empty
{
count++;
// put neighbors onto wavefront
T* dpp = &img.at<T>(p.y, p.x);
T dp = *dpp;
int* lpp = labels + width*p.y + p.x;
if( p.x < width-1 && !lpp[+1] && dpp[+1] != newVal && std::abs(dp - dpp[+1]) <= maxDiff )
{
lpp[+1] = curlabel;
*ws++ = Point2s(p.x+1, p.y);
}
if( p.x > 0 && !lpp[-1] && dpp[-1] != newVal && std::abs(dp - dpp[-1]) <= maxDiff )
{
lpp[-1] = curlabel;
*ws++ = Point2s(p.x-1, p.y);
}
if( p.y < height-1 && !lpp[+width] && dpp[+dstep] != newVal && std::abs(dp - dpp[+dstep]) <= maxDiff )
{
lpp[+width] = curlabel;
*ws++ = Point2s(p.x, p.y+1);
}
if( p.y > 0 && !lpp[-width] && dpp[-dstep] != newVal && std::abs(dp - dpp[-dstep]) <= maxDiff )
{
lpp[-width] = curlabel;
*ws++ = Point2s(p.x, p.y-1);
}
// pop most recent and propagate
// NB: could try least recent, maybe better convergence
p = *--ws;
}
// assign label type
if( count <= maxSpeckleSize ) // speckle region
{
rtype[ls[j]] = 1; // small region label
ds[j] = (T)newVal;
}
else
rtype[ls[j]] = 0; // large region label
}
rtype[ls[j]] = 0; // large region label
}
}
}
}
}
}
void cv::filterSpeckles( InputOutputArray _img, double _newval, int maxSpeckleSize,
double _maxDiff, InputOutputArray __buf )
{
@@ -1054,16 +1118,3 @@ void cv::validateDisparity( InputOutputArray _disp, InputArray _cost, int minDis
}
}
CvRect cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
int numberOfDisparities, int SADWindowSize )
{
return (CvRect)cv::getValidDisparityROI( roi1, roi2, minDisparity,
numberOfDisparities, SADWindowSize );
}
void cvValidateDisparity( CvArr* _disp, const CvArr* _cost, int minDisparity,
int numberOfDisparities, int disp12MaxDiff )
{
cv::Mat disp = cv::cvarrToMat(_disp), cost = cv::cvarrToMat(_cost);
cv::validateDisparity( disp, cost, minDisparity, numberOfDisparities, disp12MaxDiff );
}