Merge pull request #2278 from KonstantinMatskevich:ocl_toinputarray

This commit is contained in:
Andrey Pavlenko 2014-02-06 12:55:04 +04:00 committed by OpenCV Buildbot
commit b6675ee2a8
23 changed files with 217 additions and 170 deletions

View File

@ -34,7 +34,7 @@ circle
---------- ----------
Draws a circle. Draws a circle.
.. ocv:function:: void circle( Mat& img, Point center, int radius, const Scalar& color, int thickness=1, int lineType=LINE_8, int shift=0 ) .. ocv:function:: void circle( InputOutputArray img, Point center, int radius, const Scalar& color, int thickness=1, int lineType=LINE_8, int shift=0 )
.. ocv:pyfunction:: cv2.circle(img, center, radius, color[, thickness[, lineType[, shift]]]) -> img .. ocv:pyfunction:: cv2.circle(img, center, radius, color[, thickness[, lineType[, shift]]]) -> img
@ -83,9 +83,9 @@ ellipse
----------- -----------
Draws a simple or thick elliptic arc or fills an ellipse sector. Draws a simple or thick elliptic arc or fills an ellipse sector.
.. ocv:function:: void ellipse( Mat& img, Point center, Size axes, double angle, double startAngle, double endAngle, const Scalar& color, int thickness=1, int lineType=LINE_8, int shift=0 ) .. ocv:function:: void ellipse( InputOutputArray img, Point center, Size axes, double angle, double startAngle, double endAngle, const Scalar& color, int thickness=1, int lineType=LINE_8, int shift=0 )
.. ocv:function:: void ellipse( Mat& img, const RotatedRect& box, const Scalar& color, int thickness=1, int lineType=LINE_8 ) .. ocv:function:: void ellipse( InputOutputArray img, const RotatedRect& box, const Scalar& color, int thickness=1, int lineType=LINE_8 )
.. ocv:pyfunction:: cv2.ellipse(img, center, axes, angle, startAngle, endAngle, color[, thickness[, lineType[, shift]]]) -> img .. ocv:pyfunction:: cv2.ellipse(img, center, axes, angle, startAngle, endAngle, color[, thickness[, lineType[, shift]]]) -> img
@ -331,7 +331,7 @@ line
-------- --------
Draws a line segment connecting two points. Draws a line segment connecting two points.
.. ocv:function:: void line( Mat& img, Point pt1, Point pt2, const Scalar& color, int thickness=1, int lineType=LINE_8, int shift=0 ) .. ocv:function:: void line( InputOutputArray img, Point pt1, Point pt2, const Scalar& color, int thickness=1, int lineType=LINE_8, int shift=0 )
.. ocv:pyfunction:: cv2.line(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) -> img .. ocv:pyfunction:: cv2.line(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) -> img
@ -417,7 +417,7 @@ rectangle
------------- -------------
Draws a simple, thick, or filled up-right rectangle. Draws a simple, thick, or filled up-right rectangle.
.. ocv:function:: void rectangle( Mat& img, Point pt1, Point pt2, const Scalar& color, int thickness=1, int lineType=LINE_8, int shift=0 ) .. ocv:function:: void rectangle( InputOutputArray img, Point pt1, Point pt2, const Scalar& color, int thickness=1, int lineType=LINE_8, int shift=0 )
.. ocv:function:: void rectangle( Mat& img, Rect rec, const Scalar& color, int thickness=1, int lineType=LINE_8, int shift=0 ) .. ocv:function:: void rectangle( Mat& img, Rect rec, const Scalar& color, int thickness=1, int lineType=LINE_8, int shift=0 )
@ -570,7 +570,7 @@ putText
----------- -----------
Draws a text string. Draws a text string.
.. ocv:function:: void putText( Mat& img, const String& text, Point org, int fontFace, double fontScale, Scalar color, int thickness=1, int lineType=LINE_8, bool bottomLeftOrigin=false ) .. ocv:function:: void putText( InputOutputArray img, const String& text, Point org, int fontFace, double fontScale, Scalar color, int thickness=1, int lineType=LINE_8, bool bottomLeftOrigin=false )
.. ocv:pyfunction:: cv2.putText(img, text, org, fontFace, fontScale, color[, thickness[, lineType[, bottomLeftOrigin]]]) -> None .. ocv:pyfunction:: cv2.putText(img, text, org, fontFace, fontScale, color[, thickness[, lineType[, bottomLeftOrigin]]]) -> None

View File

@ -507,11 +507,11 @@ CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev
CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0); CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
//! draws the line segment (pt1, pt2) in the image //! draws the line segment (pt1, pt2) in the image
CV_EXPORTS_W void line(CV_IN_OUT Mat& img, Point pt1, Point pt2, const Scalar& color, CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
int thickness = 1, int lineType = LINE_8, int shift = 0); int thickness = 1, int lineType = LINE_8, int shift = 0);
//! draws the rectangle outline or a solid rectangle with the opposite corners pt1 and pt2 in the image //! draws the rectangle outline or a solid rectangle with the opposite corners pt1 and pt2 in the image
CV_EXPORTS_W void rectangle(CV_IN_OUT Mat& img, Point pt1, Point pt2, CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2,
const Scalar& color, int thickness = 1, const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0); int lineType = LINE_8, int shift = 0);
@ -521,18 +521,18 @@ CV_EXPORTS void rectangle(CV_IN_OUT Mat& img, Rect rec,
int lineType = LINE_8, int shift = 0); int lineType = LINE_8, int shift = 0);
//! draws the circle outline or a solid circle in the image //! draws the circle outline or a solid circle in the image
CV_EXPORTS_W void circle(CV_IN_OUT Mat& img, Point center, int radius, CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius,
const Scalar& color, int thickness = 1, const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0); int lineType = LINE_8, int shift = 0);
//! draws an elliptic arc, ellipse sector or a rotated ellipse in the image //! draws an elliptic arc, ellipse sector or a rotated ellipse in the image
CV_EXPORTS_W void ellipse(CV_IN_OUT Mat& img, Point center, Size axes, CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes,
double angle, double startAngle, double endAngle, double angle, double startAngle, double endAngle,
const Scalar& color, int thickness = 1, const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0); int lineType = LINE_8, int shift = 0);
//! draws a rotated ellipse in the image //! draws a rotated ellipse in the image
CV_EXPORTS_W void ellipse(CV_IN_OUT Mat& img, const RotatedRect& box, const Scalar& color, CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color,
int thickness = 1, int lineType = LINE_8); int thickness = 1, int lineType = LINE_8);
//! draws a filled convex polygon in the image //! draws a filled convex polygon in the image
@ -582,7 +582,7 @@ CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle,
CV_OUT std::vector<Point>& pts ); CV_OUT std::vector<Point>& pts );
//! renders text string in the image //! renders text string in the image
CV_EXPORTS_W void putText( Mat& img, const String& text, Point org, CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org,
int fontFace, double fontScale, Scalar color, int fontFace, double fontScale, Scalar color,
int thickness = 1, int lineType = LINE_8, int thickness = 1, int lineType = LINE_8,
bool bottomLeftOrigin = false ); bool bottomLeftOrigin = false );

View File

@ -1568,9 +1568,11 @@ PolyLine( Mat& img, const Point* v, int count, bool is_closed,
* External functions * * External functions *
\****************************************************************************************/ \****************************************************************************************/
void line( Mat& img, Point pt1, Point pt2, const Scalar& color, void line( InputOutputArray _img, Point pt1, Point pt2, const Scalar& color,
int thickness, int line_type, int shift ) int thickness, int line_type, int shift )
{ {
Mat img = _img.getMat();
if( line_type == CV_AA && img.depth() != CV_8U ) if( line_type == CV_AA && img.depth() != CV_8U )
line_type = 8; line_type = 8;
@ -1582,10 +1584,12 @@ void line( Mat& img, Point pt1, Point pt2, const Scalar& color,
ThickLine( img, pt1, pt2, buf, thickness, line_type, 3, shift ); ThickLine( img, pt1, pt2, buf, thickness, line_type, 3, shift );
} }
void rectangle( Mat& img, Point pt1, Point pt2, void rectangle( InputOutputArray _img, Point pt1, Point pt2,
const Scalar& color, int thickness, const Scalar& color, int thickness,
int lineType, int shift ) int lineType, int shift )
{ {
Mat img = _img.getMat();
if( lineType == CV_AA && img.depth() != CV_8U ) if( lineType == CV_AA && img.depth() != CV_8U )
lineType = 8; lineType = 8;
@ -1622,9 +1626,11 @@ void rectangle( Mat& img, Rect rec,
} }
void circle( Mat& img, Point center, int radius, void circle( InputOutputArray _img, Point center, int radius,
const Scalar& color, int thickness, int line_type, int shift ) const Scalar& color, int thickness, int line_type, int shift )
{ {
Mat img = _img.getMat();
if( line_type == CV_AA && img.depth() != CV_8U ) if( line_type == CV_AA && img.depth() != CV_8U )
line_type = 8; line_type = 8;
@ -1647,10 +1653,12 @@ void circle( Mat& img, Point center, int radius,
} }
void ellipse( Mat& img, Point center, Size axes, void ellipse( InputOutputArray _img, Point center, Size axes,
double angle, double start_angle, double end_angle, double angle, double start_angle, double end_angle,
const Scalar& color, int thickness, int line_type, int shift ) const Scalar& color, int thickness, int line_type, int shift )
{ {
Mat img = _img.getMat();
if( line_type == CV_AA && img.depth() != CV_8U ) if( line_type == CV_AA && img.depth() != CV_8U )
line_type = 8; line_type = 8;
@ -1672,9 +1680,11 @@ void ellipse( Mat& img, Point center, Size axes,
_end_angle, buf, thickness, line_type ); _end_angle, buf, thickness, line_type );
} }
void ellipse(Mat& img, const RotatedRect& box, const Scalar& color, void ellipse(InputOutputArray _img, const RotatedRect& box, const Scalar& color,
int thickness, int lineType) int thickness, int lineType)
{ {
Mat img = _img.getMat();
if( lineType == CV_AA && img.depth() != CV_8U ) if( lineType == CV_AA && img.depth() != CV_8U )
lineType = 8; lineType = 8;
@ -1918,11 +1928,12 @@ static const int* getFontData(int fontFace)
} }
void putText( Mat& img, const String& text, Point org, void putText( InputOutputArray _img, const String& text, Point org,
int fontFace, double fontScale, Scalar color, int fontFace, double fontScale, Scalar color,
int thickness, int line_type, bool bottomLeftOrigin ) int thickness, int line_type, bool bottomLeftOrigin )
{ {
Mat img = _img.getMat();
const int* ascii = getFontData(fontFace); const int* ascii = getFontData(fontFace);
double buf[4]; double buf[4];

View File

@ -25,10 +25,10 @@ Abstract base class for computing descriptors for image keypoints. ::
public: public:
virtual ~DescriptorExtractor(); virtual ~DescriptorExtractor();
void compute( const Mat& image, vector<KeyPoint>& keypoints, void compute( InputArray image, vector<KeyPoint>& keypoints,
Mat& descriptors ) const; OutputArray descriptors ) const;
void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, void compute( InputArrayOfArrays images, vector<vector<KeyPoint> >& keypoints,
vector<Mat>& descriptors ) const; OutputArrayOfArrays descriptors ) const;
virtual void read( const FileNode& ); virtual void read( const FileNode& );
virtual void write( FileStorage& ) const; virtual void write( FileStorage& ) const;
@ -57,9 +57,9 @@ DescriptorExtractor::compute
-------------------------------- --------------------------------
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant). Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant).
.. ocv:function:: void DescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const .. ocv:function:: void DescriptorExtractor::compute( InputArray image, vector<KeyPoint>& keypoints, OutputArray descriptors ) const
.. ocv:function:: void DescriptorExtractor::compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, vector<Mat>& descriptors ) const .. ocv:function:: void DescriptorExtractor::compute( InputArrayOfArrays images, vector<vector<KeyPoint> >& keypoints, OutputArrayOfArrays descriptors ) const
.. ocv:pyfunction:: cv2.DescriptorExtractor_create.compute(image, keypoints[, descriptors]) -> keypoints, descriptors .. ocv:pyfunction:: cv2.DescriptorExtractor_create.compute(image, keypoints[, descriptors]) -> keypoints, descriptors

View File

@ -29,7 +29,7 @@ Abstract interface for extracting and matching a keypoint descriptor. There are
GenericDescriptorMatcher(); GenericDescriptorMatcher();
virtual ~GenericDescriptorMatcher(); virtual ~GenericDescriptorMatcher();
virtual void add( const vector<Mat>& images, virtual void add( InputArrayOfArrays images,
vector<vector<KeyPoint> >& keypoints ); vector<vector<KeyPoint> >& keypoints );
const vector<Mat>& getTrainImages() const; const vector<Mat>& getTrainImages() const;
@ -40,36 +40,36 @@ Abstract interface for extracting and matching a keypoint descriptor. There are
virtual bool isMaskSupported() = 0; virtual bool isMaskSupported() = 0;
void classify( const Mat& queryImage, void classify( InputArray queryImage,
vector<KeyPoint>& queryKeypoints, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, InputArray trainImage,
vector<KeyPoint>& trainKeypoints ) const; vector<KeyPoint>& trainKeypoints ) const;
void classify( const Mat& queryImage, void classify( InputArray queryImage,
vector<KeyPoint>& queryKeypoints ); vector<KeyPoint>& queryKeypoints );
/* /*
* Group of methods to match keypoints from an image pair. * Group of methods to match keypoints from an image pair.
*/ */
void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, void match( InputArray queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints, InputArray trainImage, vector<KeyPoint>& trainKeypoints,
vector<DMatch>& matches, const Mat& mask=Mat() ) const; vector<DMatch>& matches, const Mat& mask=Mat() ) const;
void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, void knnMatch( InputArray queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints, InputArray trainImage, vector<KeyPoint>& trainKeypoints,
vector<vector<DMatch> >& matches, int k, vector<vector<DMatch> >& matches, int k,
const Mat& mask=Mat(), bool compactResult=false ) const; const Mat& mask=Mat(), bool compactResult=false ) const;
void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, void radiusMatch( InputArray queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints, InputArray trainImage, vector<KeyPoint>& trainKeypoints,
vector<vector<DMatch> >& matches, float maxDistance, vector<vector<DMatch> >& matches, float maxDistance,
const Mat& mask=Mat(), bool compactResult=false ) const; const Mat& mask=Mat(), bool compactResult=false ) const;
/* /*
* Group of methods to match keypoints from one image to an image set. * Group of methods to match keypoints from one image to an image set.
*/ */
void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, void match( InputArray queryImage, vector<KeyPoint>& queryKeypoints,
vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() ); vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() );
void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, void knnMatch( InputArray queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int k, vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, void radiusMatch( InputArray queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance, vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
@ -89,7 +89,7 @@ GenericDescriptorMatcher::add
--------------------------------- ---------------------------------
Adds images and their keypoints to the training collection stored in the class instance. Adds images and their keypoints to the training collection stored in the class instance.
.. ocv:function:: void GenericDescriptorMatcher::add( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints ) .. ocv:function:: void GenericDescriptorMatcher::add( InputArrayOfArrays images, vector<vector<KeyPoint> >& keypoints )
:param images: Image collection. :param images: Image collection.
@ -142,9 +142,9 @@ GenericDescriptorMatcher::classify
-------------------------------------- --------------------------------------
Classifies keypoints from a query set. Classifies keypoints from a query set.
.. ocv:function:: void GenericDescriptorMatcher::classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const .. ocv:function:: void GenericDescriptorMatcher::classify( InputArray queryImage, vector<KeyPoint>& queryKeypoints, InputArray trainImage, vector<KeyPoint>& trainKeypoints ) const
.. ocv:function:: void GenericDescriptorMatcher::classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints ) .. ocv:function:: void GenericDescriptorMatcher::classify( InputArray queryImage, vector<KeyPoint>& queryKeypoints )
:param queryImage: Query image. :param queryImage: Query image.
@ -170,9 +170,9 @@ GenericDescriptorMatcher::match
----------------------------------- -----------------------------------
Finds the best match in the training set for each keypoint from the query set. Finds the best match in the training set for each keypoint from the query set.
.. ocv:function:: void GenericDescriptorMatcher::match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, const Mat& trainImage, vector<KeyPoint>& trainKeypoints, vector<DMatch>& matches, const Mat& mask=Mat() ) const .. ocv:function:: void GenericDescriptorMatcher::match(InputArray queryImage, vector<KeyPoint>& queryKeypoints, InputArray trainImage, vector<KeyPoint>& trainKeypoints, vector<DMatch>& matches, const Mat& mask=Mat() ) const
.. ocv:function:: void GenericDescriptorMatcher::match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() ) .. ocv:function:: void GenericDescriptorMatcher::match( InputArray queryImage, vector<KeyPoint>& queryKeypoints, vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() )
:param queryImage: Query image. :param queryImage: Query image.
@ -196,9 +196,9 @@ GenericDescriptorMatcher::knnMatch
-------------------------------------- --------------------------------------
Finds the ``k`` best matches for each query keypoint. Finds the ``k`` best matches for each query keypoint.
.. ocv:function:: void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, const Mat& trainImage, vector<KeyPoint>& trainKeypoints, vector<vector<DMatch> >& matches, int k, const Mat& mask=Mat(), bool compactResult=false ) const .. ocv:function:: void GenericDescriptorMatcher::knnMatch( InputArray queryImage, vector<KeyPoint>& queryKeypoints, InputArray trainImage, vector<KeyPoint>& trainKeypoints, vector<vector<DMatch> >& matches, int k, const Mat& mask=Mat(), bool compactResult=false ) const
.. ocv:function:: void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, vector<vector<DMatch> >& matches, int k, const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) .. ocv:function:: void GenericDescriptorMatcher::knnMatch( InputArray queryImage, vector<KeyPoint>& queryKeypoints, vector<vector<DMatch> >& matches, int k, const vector<Mat>& masks=vector<Mat>(), bool compactResult=false )
The methods are extended variants of ``GenericDescriptorMatch::match``. The parameters are similar, and the semantics is similar to ``DescriptorMatcher::knnMatch``. But this class does not require explicitly computed keypoint descriptors. The methods are extended variants of ``GenericDescriptorMatch::match``. The parameters are similar, and the semantics is similar to ``DescriptorMatcher::knnMatch``. But this class does not require explicitly computed keypoint descriptors.
@ -208,9 +208,9 @@ GenericDescriptorMatcher::radiusMatch
----------------------------------------- -----------------------------------------
For each query keypoint, finds the training keypoints not farther than the specified distance. For each query keypoint, finds the training keypoints not farther than the specified distance.
.. ocv:function:: void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, const Mat& trainImage, vector<KeyPoint>& trainKeypoints, vector<vector<DMatch> >& matches, float maxDistance, const Mat& mask=Mat(), bool compactResult=false ) const .. ocv:function:: void GenericDescriptorMatcher::radiusMatch( InputArray queryImage, vector<KeyPoint>& queryKeypoints, InputArray trainImage, vector<KeyPoint>& trainKeypoints, vector<vector<DMatch> >& matches, float maxDistance, const Mat& mask=Mat(), bool compactResult=false ) const
.. ocv:function:: void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, vector<vector<DMatch> >& matches, float maxDistance, const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) .. ocv:function:: void GenericDescriptorMatcher::radiusMatch( InputArray queryImage, vector<KeyPoint>& queryKeypoints, vector<vector<DMatch> >& matches, float maxDistance, const vector<Mat>& masks=vector<Mat>(), bool compactResult=false )
The methods are similar to ``DescriptorMatcher::radius``. But this class does not require explicitly computed keypoint descriptors. The methods are similar to ``DescriptorMatcher::radius``. But this class does not require explicitly computed keypoint descriptors.
@ -254,7 +254,7 @@ Class used for matching descriptors that can be described as vectors in a finite
VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher ); VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher );
virtual ~VectorDescriptorMatcher(); virtual ~VectorDescriptorMatcher();
virtual void add( const vector<Mat>& imgCollection, virtual void add( InputArrayOfArrays imgCollection,
vector<vector<KeyPoint> >& pointCollection ); vector<vector<KeyPoint> >& pointCollection );
virtual void clear(); virtual void clear();
virtual void train(); virtual void train();

View File

@ -7,9 +7,9 @@ drawMatches
--------------- ---------------
Draws the found matches of keypoints from two images. Draws the found matches of keypoints from two images.
.. ocv:function:: void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1, const Mat& img2, const vector<KeyPoint>& keypoints2, const vector<DMatch>& matches1to2, Mat& outImg, const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), const vector<char>& matchesMask=vector<char>(), int flags=DrawMatchesFlags::DEFAULT ) .. ocv:function:: void drawMatches( InputArray img1, const vector<KeyPoint>& keypoints1, InputArray img2, const vector<KeyPoint>& keypoints2, const vector<DMatch>& matches1to2, InputOutputArray outImg, const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), const vector<char>& matchesMask=vector<char>(), int flags=DrawMatchesFlags::DEFAULT )
.. ocv:function:: void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1, const Mat& img2, const vector<KeyPoint>& keypoints2, const vector<vector<DMatch> >& matches1to2, Mat& outImg, const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT ) .. ocv:function:: void drawMatches( InputArray img1, const vector<KeyPoint>& keypoints1, InputArray img2, const vector<KeyPoint>& keypoints2, const vector<vector<DMatch> >& matches1to2, InputOutputArray outImg, const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT )
.. ocv:pyfunction:: cv2.drawMatches(img1, keypoints1, img2, keypoints2, matches1to2[, outImg[, matchColor[, singlePointColor[, matchesMask[, flags]]]]]) -> outImg .. ocv:pyfunction:: cv2.drawMatches(img1, keypoints1, img2, keypoints2, matches1to2[, outImg[, matchColor[, singlePointColor[, matchesMask[, flags]]]]]) -> outImg
@ -69,7 +69,7 @@ drawKeypoints
----------------- -----------------
Draws keypoints. Draws keypoints.
.. ocv:function:: void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, Mat& outImage, const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT ) .. ocv:function:: void drawKeypoints( InputArray image, const vector<KeyPoint>& keypoints, InputOutputArray outImage, const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT )
.. ocv:pyfunction:: cv2.drawKeypoints(image, keypoints[, outImage[, color[, flags]]]) -> outImage .. ocv:pyfunction:: cv2.drawKeypoints(image, keypoints[, outImage[, color[, flags]]]) -> outImage

View File

@ -129,11 +129,11 @@ The class declaration is the following: ::
void setVocabulary( const Mat& vocabulary ); void setVocabulary( const Mat& vocabulary );
const Mat& getVocabulary() const; const Mat& getVocabulary() const;
void compute( const Mat& image, vector<KeyPoint>& keypoints, void compute( InputArray image, vector<KeyPoint>& keypoints,
Mat& imgDescriptor, OutputArray imgDescriptor,
vector<vector<int> >* pointIdxsOfClusters=0, vector<vector<int> >* pointIdxsOfClusters=0,
Mat* descriptors=0 ); Mat* descriptors=0 );
void compute( const Mat& descriptors, Mat& imgDescriptor, void compute( InputArray descriptors, OutputArray imgDescriptor,
std::vector<std::vector<int> >* pointIdxsOfClusters=0 ); std::vector<std::vector<int> >* pointIdxsOfClusters=0 );
int descriptorSize() const; int descriptorSize() const;
int descriptorType() const; int descriptorType() const;
@ -180,8 +180,8 @@ BOWImgDescriptorExtractor::compute
-------------------------------------- --------------------------------------
Computes an image descriptor using the set visual vocabulary. Computes an image descriptor using the set visual vocabulary.
.. ocv:function:: void BOWImgDescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor, vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 ) .. ocv:function:: void BOWImgDescriptorExtractor::compute( InputArray image, vector<KeyPoint>& keypoints, OutputArray imgDescriptor, vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 )
.. ocv:function:: void BOWImgDescriptorExtractor::compute( const Mat& keypointDescriptors, Mat& imgDescriptor, std::vector<std::vector<int> >* pointIdxsOfClusters=0 ) .. ocv:function:: void BOWImgDescriptorExtractor::compute( InputArray keypointDescriptors, OutputArray imgDescriptor, std::vector<std::vector<int> >* pointIdxsOfClusters=0 )
:param image: Image, for which the descriptor is computed. :param image: Image, for which the descriptor is computed.

View File

@ -156,7 +156,7 @@ public:
* keypoints The input keypoints. Keypoints for which a descriptor cannot be computed are removed. * keypoints The input keypoints. Keypoints for which a descriptor cannot be computed are removed.
* descriptors Copmputed descriptors. Row i is the descriptor for keypoint i. * descriptors Copmputed descriptors. Row i is the descriptor for keypoint i.
*/ */
CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const; CV_WRAP void compute( InputArray image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
/* /*
* Compute the descriptors for a keypoints collection detected in image collection. * Compute the descriptors for a keypoints collection detected in image collection.
@ -165,7 +165,7 @@ public:
* Keypoints for which a descriptor cannot be computed are removed. * Keypoints for which a descriptor cannot be computed are removed.
* descriptors Descriptor collection. descriptors[i] are descriptors computed for set keypoints[i]. * descriptors Descriptor collection. descriptors[i] are descriptors computed for set keypoints[i].
*/ */
void compute( const std::vector<Mat>& images, std::vector<std::vector<KeyPoint> >& keypoints, std::vector<Mat>& descriptors ) const; void compute( InputArrayOfArrays images, std::vector<std::vector<KeyPoint> >& keypoints, OutputArrayOfArrays descriptors ) const;
CV_WRAP virtual int descriptorSize() const = 0; CV_WRAP virtual int descriptorSize() const = 0;
CV_WRAP virtual int descriptorType() const = 0; CV_WRAP virtual int descriptorType() const = 0;
@ -176,7 +176,7 @@ public:
CV_WRAP static Ptr<DescriptorExtractor> create( const String& descriptorExtractorType ); CV_WRAP static Ptr<DescriptorExtractor> create( const String& descriptorExtractorType );
protected: protected:
virtual void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const = 0; virtual void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const = 0;
/* /*
* Remove keypoints within borderPixels of an image edge. * Remove keypoints within borderPixels of an image edge.
@ -207,7 +207,7 @@ public:
OutputArray descriptors, OutputArray descriptors,
bool useProvidedKeypoints=false ) const = 0; bool useProvidedKeypoints=false ) const = 0;
CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const; CV_WRAP void compute( InputArray image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
// Create feature detector and descriptor extractor by name. // Create feature detector and descriptor extractor by name.
CV_WRAP static Ptr<Feature2D> create( const String& name ); CV_WRAP static Ptr<Feature2D> create( const String& name );
@ -252,7 +252,7 @@ public:
protected: protected:
void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const; void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const; void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
void computeKeypointsNoOrientation(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const; void computeKeypointsNoOrientation(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const;
@ -337,7 +337,7 @@ public:
protected: protected:
void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const; void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const; void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
CV_PROP_RW int nfeatures; CV_PROP_RW int nfeatures;
@ -403,9 +403,9 @@ public:
}; };
protected: protected:
virtual void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const; virtual void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
void buildPattern(); void buildPattern();
uchar meanIntensity( const Mat& image, const Mat& integral, const float kp_x, const float kp_y, uchar meanIntensity( InputArray image, InputArray integral, const float kp_x, const float kp_y,
const unsigned int scale, const unsigned int rot, const unsigned int point ) const; const unsigned int scale, const unsigned int rot, const unsigned int point ) const;
bool orientationNormalized; //true if the orientation is normalized, false otherwise bool orientationNormalized; //true if the orientation is normalized, false otherwise
@ -609,7 +609,7 @@ protected:
}; };
virtual void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const; virtual void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
virtual void findBlobs(const Mat &image, const Mat &binaryImage, std::vector<Center> &centers) const; virtual void findBlobs(InputArray image, InputArray binaryImage, std::vector<Center> &centers) const;
Params params; Params params;
AlgorithmInfo* info() const; AlgorithmInfo* info() const;
@ -850,7 +850,7 @@ public:
virtual bool empty() const; virtual bool empty() const;
protected: protected:
virtual void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const; virtual void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
Ptr<DescriptorExtractor> descriptorExtractor; Ptr<DescriptorExtractor> descriptorExtractor;
}; };
@ -879,9 +879,9 @@ public:
AlgorithmInfo* info() const; AlgorithmInfo* info() const;
protected: protected:
virtual void computeImpl(const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const; virtual void computeImpl(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const;
typedef void(*PixelTestFn)(const Mat&, const std::vector<KeyPoint>&, Mat&); typedef void(*PixelTestFn)(InputArray, const std::vector<KeyPoint>&, OutputArray);
int bytes_; int bytes_;
PixelTestFn test_fn_; PixelTestFn test_fn_;
@ -1214,7 +1214,7 @@ public:
* If inheritor class need perform such prefiltering the method add() must be overloaded. * If inheritor class need perform such prefiltering the method add() must be overloaded.
* In the other class methods programmer has access to the train keypoints by a constant link. * In the other class methods programmer has access to the train keypoints by a constant link.
*/ */
virtual void add( const std::vector<Mat>& images, virtual void add( InputArrayOfArrays images,
std::vector<std::vector<KeyPoint> >& keypoints ); std::vector<std::vector<KeyPoint> >& keypoints );
const std::vector<Mat>& getTrainImages() const; const std::vector<Mat>& getTrainImages() const;
@ -1243,10 +1243,10 @@ public:
* trainKeypoints Keypoints from the train image * trainKeypoints Keypoints from the train image
*/ */
// Classify keypoints from query image under one train image. // Classify keypoints from query image under one train image.
void classify( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void classify( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints ) const; InputArray trainImage, std::vector<KeyPoint>& trainKeypoints ) const;
// Classify keypoints from query image under train image collection. // Classify keypoints from query image under train image collection.
void classify( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints ); void classify( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints );
/* /*
* Group of methods to match keypoints from image pair. * Group of methods to match keypoints from image pair.
@ -1254,32 +1254,32 @@ public:
* train() method is called here. * train() method is called here.
*/ */
// Find one best match for each query descriptor (if mask is empty). // Find one best match for each query descriptor (if mask is empty).
void match( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void match( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints, InputArray trainImage, std::vector<KeyPoint>& trainKeypoints,
std::vector<DMatch>& matches, const Mat& mask=Mat() ) const; std::vector<DMatch>& matches, const Mat& mask=Mat() ) const;
// Find k best matches for each query keypoint (in increasing order of distances). // Find k best matches for each query keypoint (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches // compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. // vector will have the same size as queryDescriptors rows.
// If compactResult is true matches vector will not contain matches for fully masked out query descriptors. // If compactResult is true matches vector will not contain matches for fully masked out query descriptors.
void knnMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void knnMatch( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints, InputArray trainImage, std::vector<KeyPoint>& trainKeypoints,
std::vector<std::vector<DMatch> >& matches, int k, std::vector<std::vector<DMatch> >& matches, int k,
const Mat& mask=Mat(), bool compactResult=false ) const; const Mat& mask=Mat(), bool compactResult=false ) const;
// Find best matches for each query descriptor which have distance less than maxDistance (in increasing order of distances). // Find best matches for each query descriptor which have distance less than maxDistance (in increasing order of distances).
void radiusMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void radiusMatch( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints, InputArray trainImage, std::vector<KeyPoint>& trainKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance, std::vector<std::vector<DMatch> >& matches, float maxDistance,
const Mat& mask=Mat(), bool compactResult=false ) const; const Mat& mask=Mat(), bool compactResult=false ) const;
/* /*
* Group of methods to match keypoints from one image to image set. * Group of methods to match keypoints from one image to image set.
* See description of similar methods for matching image pair above. * See description of similar methods for matching image pair above.
*/ */
void match( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void match( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<DMatch>& matches, const std::vector<Mat>& masks=std::vector<Mat>() ); std::vector<DMatch>& matches, const std::vector<Mat>& masks=std::vector<Mat>() );
void knnMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void knnMatch( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int k, std::vector<std::vector<DMatch> >& matches, int k,
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false ); const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false );
void radiusMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void radiusMatch(InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance, std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false ); const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false );
@ -1303,10 +1303,10 @@ protected:
// In fact the matching is implemented only by the following two methods. These methods suppose // In fact the matching is implemented only by the following two methods. These methods suppose
// that the class object has been trained already. Public match methods call these methods // that the class object has been trained already. Public match methods call these methods
// after calling train(). // after calling train().
virtual void knnMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, virtual void knnMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int k, std::vector<std::vector<DMatch> >& matches, int k,
const std::vector<Mat>& masks, bool compactResult ) = 0; const std::vector<Mat>& masks, bool compactResult ) = 0;
virtual void radiusMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, virtual void radiusMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance, std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& masks, bool compactResult ) = 0; const std::vector<Mat>& masks, bool compactResult ) = 0;
/* /*
@ -1365,7 +1365,7 @@ public:
VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher ); VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher );
virtual ~VectorDescriptorMatcher(); virtual ~VectorDescriptorMatcher();
virtual void add( const std::vector<Mat>& imgCollection, virtual void add( InputArrayOfArrays imgCollection,
std::vector<std::vector<KeyPoint> >& pointCollection ); std::vector<std::vector<KeyPoint> >& pointCollection );
virtual void clear(); virtual void clear();
@ -1381,10 +1381,10 @@ public:
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const; virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected: protected:
virtual void knnMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, virtual void knnMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int k, std::vector<std::vector<DMatch> >& matches, int k,
const std::vector<Mat>& masks, bool compactResult ); const std::vector<Mat>& masks, bool compactResult );
virtual void radiusMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, virtual void radiusMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance, std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& masks, bool compactResult ); const std::vector<Mat>& masks, bool compactResult );
@ -1411,19 +1411,19 @@ struct CV_EXPORTS DrawMatchesFlags
}; };
// Draw keypoints. // Draw keypoints.
CV_EXPORTS_W void drawKeypoints( const Mat& image, const std::vector<KeyPoint>& keypoints, CV_OUT Mat& outImage, CV_EXPORTS_W void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage,
const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT ); const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT );
// Draws matches of keypints from two images on output image. // Draws matches of keypints from two images on output image.
CV_EXPORTS_W void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1, CV_EXPORTS_W void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
const Mat& img2, const std::vector<KeyPoint>& keypoints2, InputArray img2, const std::vector<KeyPoint>& keypoints2,
const std::vector<DMatch>& matches1to2, CV_OUT Mat& outImg, const std::vector<DMatch>& matches1to2, InputOutputArray outImg,
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
const std::vector<char>& matchesMask=std::vector<char>(), int flags=DrawMatchesFlags::DEFAULT ); const std::vector<char>& matchesMask=std::vector<char>(), int flags=DrawMatchesFlags::DEFAULT );
CV_EXPORTS_AS(drawMatchesKnn) void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1, CV_EXPORTS_AS(drawMatchesKnn) void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
const Mat& img2, const std::vector<KeyPoint>& keypoints2, InputArray img2, const std::vector<KeyPoint>& keypoints2,
const std::vector<std::vector<DMatch> >& matches1to2, CV_OUT Mat& outImg, const std::vector<std::vector<DMatch> >& matches1to2, InputOutputArray outImg,
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
const std::vector<std::vector<char> >& matchesMask=std::vector<std::vector<char> >(), int flags=DrawMatchesFlags::DEFAULT ); const std::vector<std::vector<char> >& matchesMask=std::vector<std::vector<char> >(), int flags=DrawMatchesFlags::DEFAULT );
@ -1518,9 +1518,9 @@ public:
void setVocabulary( const Mat& vocabulary ); void setVocabulary( const Mat& vocabulary );
const Mat& getVocabulary() const; const Mat& getVocabulary() const;
void compute( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& imgDescriptor, void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray imgDescriptor,
std::vector<std::vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 ); std::vector<std::vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 );
void compute( const Mat& keypointDescriptors, Mat& imgDescriptor, void compute( InputArray keypointDescriptors, OutputArray imgDescriptor,
std::vector<std::vector<int> >* pointIdxsOfClusters=0 ); std::vector<std::vector<int> >* pointIdxsOfClusters=0 );
// compute() is not constant because DescriptorMatcher::match is not constant // compute() is not constant because DescriptorMatcher::match is not constant

View File

@ -140,7 +140,7 @@ const Mat& BOWImgDescriptorExtractor::getVocabulary() const
return vocabulary; return vocabulary;
} }
void BOWImgDescriptorExtractor::compute( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& imgDescriptor, void BOWImgDescriptorExtractor::compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray imgDescriptor,
std::vector<std::vector<int> >* pointIdxsOfClusters, Mat* descriptors ) std::vector<std::vector<int> >* pointIdxsOfClusters, Mat* descriptors )
{ {
imgDescriptor.release(); imgDescriptor.release();
@ -170,7 +170,7 @@ int BOWImgDescriptorExtractor::descriptorType() const
return CV_32FC1; return CV_32FC1;
} }
void BOWImgDescriptorExtractor::compute( const Mat& keypointDescriptors, Mat& imgDescriptor, std::vector<std::vector<int> >* pointIdxsOfClusters ) void BOWImgDescriptorExtractor::compute( InputArray keypointDescriptors, OutputArray _imgDescriptor, std::vector<std::vector<int> >* pointIdxsOfClusters )
{ {
CV_Assert( vocabulary.empty() != false ); CV_Assert( vocabulary.empty() != false );
@ -187,7 +187,11 @@ void BOWImgDescriptorExtractor::compute( const Mat& keypointDescriptors, Mat& im
pointIdxsOfClusters->resize(clusterCount); pointIdxsOfClusters->resize(clusterCount);
} }
imgDescriptor = Mat( 1, clusterCount, descriptorType(), Scalar::all(0.0) ); _imgDescriptor.create(1, clusterCount, descriptorType());
_imgDescriptor.setTo(Scalar::all(0));
Mat imgDescriptor = _imgDescriptor.getMat();
float *dptr = (float*)imgDescriptor.data; float *dptr = (float*)imgDescriptor.data;
for( size_t i = 0; i < matches.size(); i++ ) for( size_t i = 0; i < matches.size(); i++ )
{ {
@ -201,7 +205,7 @@ void BOWImgDescriptorExtractor::compute( const Mat& keypointDescriptors, Mat& im
} }
// Normalize image descriptor. // Normalize image descriptor.
imgDescriptor /= keypointDescriptors.rows; imgDescriptor /= keypointDescriptors.size().height;
} }
} }

View File

@ -163,8 +163,9 @@ void SimpleBlobDetector::write( cv::FileStorage& fs ) const
params.write(fs); params.write(fs);
} }
void SimpleBlobDetector::findBlobs(const cv::Mat &image, const cv::Mat &binaryImage, std::vector<Center> &centers) const void SimpleBlobDetector::findBlobs(InputArray _image, InputArray _binaryImage, std::vector<Center> &centers) const
{ {
Mat image = _image.getMat(), binaryImage = _binaryImage.getMat();
(void)image; (void)image;
centers.clear(); centers.clear();

View File

@ -61,8 +61,9 @@ inline int smoothedSum(const Mat& sum, const KeyPoint& pt, int y, int x)
+ sum.at<int>(img_y - HALF_KERNEL, img_x - HALF_KERNEL); + sum.at<int>(img_y - HALF_KERNEL, img_x - HALF_KERNEL);
} }
static void pixelTests16(const Mat& sum, const std::vector<KeyPoint>& keypoints, Mat& descriptors) static void pixelTests16(InputArray _sum, const std::vector<KeyPoint>& keypoints, OutputArray _descriptors)
{ {
Mat sum = _sum.getMat(), descriptors = _descriptors.getMat();
for (int i = 0; i < (int)keypoints.size(); ++i) for (int i = 0; i < (int)keypoints.size(); ++i)
{ {
uchar* desc = descriptors.ptr(i); uchar* desc = descriptors.ptr(i);
@ -71,8 +72,9 @@ static void pixelTests16(const Mat& sum, const std::vector<KeyPoint>& keypoints,
} }
} }
static void pixelTests32(const Mat& sum, const std::vector<KeyPoint>& keypoints, Mat& descriptors) static void pixelTests32(InputArray _sum, const std::vector<KeyPoint>& keypoints, OutputArray _descriptors)
{ {
Mat sum = _sum.getMat(), descriptors = _descriptors.getMat();
for (int i = 0; i < (int)keypoints.size(); ++i) for (int i = 0; i < (int)keypoints.size(); ++i)
{ {
uchar* desc = descriptors.ptr(i); uchar* desc = descriptors.ptr(i);
@ -82,8 +84,9 @@ static void pixelTests32(const Mat& sum, const std::vector<KeyPoint>& keypoints,
} }
} }
static void pixelTests64(const Mat& sum, const std::vector<KeyPoint>& keypoints, Mat& descriptors) static void pixelTests64(InputArray _sum, const std::vector<KeyPoint>& keypoints, OutputArray _descriptors)
{ {
Mat sum = _sum.getMat(), descriptors = _descriptors.getMat();
for (int i = 0; i < (int)keypoints.size(); ++i) for (int i = 0; i < (int)keypoints.size(); ++i)
{ {
uchar* desc = descriptors.ptr(i); uchar* desc = descriptors.ptr(i);
@ -155,12 +158,12 @@ void BriefDescriptorExtractor::write( FileStorage& fs) const
fs << "descriptorSize" << bytes_; fs << "descriptorSize" << bytes_;
} }
void BriefDescriptorExtractor::computeImpl(const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const void BriefDescriptorExtractor::computeImpl(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
{ {
// Construct integral image for fast smoothing (box filter) // Construct integral image for fast smoothing (box filter)
Mat sum; Mat sum;
Mat grayImage = image; Mat grayImage = image.getMat();
if( image.type() != CV_8U ) cvtColor( image, grayImage, COLOR_BGR2GRAY ); if( image.type() != CV_8U ) cvtColor( image, grayImage, COLOR_BGR2GRAY );
///TODO allow the user to pass in a precomputed integral image ///TODO allow the user to pass in a precomputed integral image
@ -173,7 +176,8 @@ void BriefDescriptorExtractor::computeImpl(const Mat& image, std::vector<KeyPoin
//Remove keypoints very close to the border //Remove keypoints very close to the border
KeyPointsFilter::runByImageBorder(keypoints, image.size(), PATCH_SIZE/2 + KERNEL_SIZE/2); KeyPointsFilter::runByImageBorder(keypoints, image.size(), PATCH_SIZE/2 + KERNEL_SIZE/2);
descriptors = Mat::zeros((int)keypoints.size(), bytes_, CV_8U); descriptors.create((int)keypoints.size(), bytes_, CV_8U);
descriptors.setTo(Scalar::all(0));
test_fn_(sum, keypoints, descriptors); test_fn_(sum, keypoints, descriptors);
} }

View File

@ -757,7 +757,7 @@ BRISK::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArra
} }
void void
BRISK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const BRISK::computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
{ {
(*this)(image, Mat(), keypoints, descriptors, true); (*this)(image, Mat(), keypoints, descriptors, true);
} }

View File

@ -54,7 +54,7 @@ namespace cv
DescriptorExtractor::~DescriptorExtractor() DescriptorExtractor::~DescriptorExtractor()
{} {}
void DescriptorExtractor::compute( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const void DescriptorExtractor::compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const
{ {
if( image.empty() || keypoints.empty() ) if( image.empty() || keypoints.empty() )
{ {
@ -68,8 +68,11 @@ void DescriptorExtractor::compute( const Mat& image, std::vector<KeyPoint>& keyp
computeImpl( image, keypoints, descriptors ); computeImpl( image, keypoints, descriptors );
} }
void DescriptorExtractor::compute( const std::vector<Mat>& imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection, std::vector<Mat>& descCollection ) const void DescriptorExtractor::compute( InputArrayOfArrays _imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection, OutputArrayOfArrays _descCollection ) const
{ {
std::vector<Mat> imageCollection, descCollection;
_imageCollection.getMatVector(imageCollection);
_descCollection.getMatVector(descCollection);
CV_Assert( imageCollection.size() == pointCollection.size() ); CV_Assert( imageCollection.size() == pointCollection.size() );
descCollection.resize( imageCollection.size() ); descCollection.resize( imageCollection.size() );
for( size_t i = 0; i < imageCollection.size(); i++ ) for( size_t i = 0; i < imageCollection.size(); i++ )
@ -106,7 +109,7 @@ Ptr<DescriptorExtractor> DescriptorExtractor::create(const String& descriptorExt
} }
CV_WRAP void Feature2D::compute( const Mat& image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const CV_WRAP void Feature2D::compute( InputArray image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const
{ {
DescriptorExtractor::compute(image, keypoints, descriptors); DescriptorExtractor::compute(image, keypoints, descriptors);
} }
@ -157,8 +160,9 @@ struct KP_LessThan
const std::vector<KeyPoint>* kp; const std::vector<KeyPoint>* kp;
}; };
void OpponentColorDescriptorExtractor::computeImpl( const Mat& bgrImage, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const void OpponentColorDescriptorExtractor::computeImpl( InputArray _bgrImage, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const
{ {
Mat bgrImage = _bgrImage.getMat();
std::vector<Mat> opponentChannels; std::vector<Mat> opponentChannels;
convertBGRImageToOpponentColorSpace( bgrImage, opponentChannels ); convertBGRImageToOpponentColorSpace( bgrImage, opponentChannels );

View File

@ -50,7 +50,7 @@ namespace cv
/* /*
* Functions to draw keypoints and matches. * Functions to draw keypoints and matches.
*/ */
static inline void _drawKeypoint( Mat& img, const KeyPoint& p, const Scalar& color, int flags ) static inline void _drawKeypoint( InputOutputArray img, const KeyPoint& p, const Scalar& color, int flags )
{ {
CV_Assert( !img.empty() ); CV_Assert( !img.empty() );
Point center( cvRound(p.pt.x * draw_multiplier), cvRound(p.pt.y * draw_multiplier) ); Point center( cvRound(p.pt.x * draw_multiplier), cvRound(p.pt.y * draw_multiplier) );
@ -88,7 +88,7 @@ static inline void _drawKeypoint( Mat& img, const KeyPoint& p, const Scalar& col
} }
} }
void drawKeypoints( const Mat& image, const std::vector<KeyPoint>& keypoints, Mat& outImage, void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage,
const Scalar& _color, int flags ) const Scalar& _color, int flags )
{ {
if( !(flags & DrawMatchesFlags::DRAW_OVER_OUTIMG) ) if( !(flags & DrawMatchesFlags::DRAW_OVER_OUTIMG) )
@ -120,25 +120,29 @@ void drawKeypoints( const Mat& image, const std::vector<KeyPoint>& keypoints, Ma
} }
} }
static void _prepareImgAndDrawKeypoints( const Mat& img1, const std::vector<KeyPoint>& keypoints1, static void _prepareImgAndDrawKeypoints( InputArray img1, const std::vector<KeyPoint>& keypoints1,
const Mat& img2, const std::vector<KeyPoint>& keypoints2, InputArray img2, const std::vector<KeyPoint>& keypoints2,
Mat& outImg, Mat& outImg1, Mat& outImg2, InputOutputArray _outImg, Mat& outImg1, Mat& outImg2,
const Scalar& singlePointColor, int flags ) const Scalar& singlePointColor, int flags )
{ {
Size size( img1.cols + img2.cols, MAX(img1.rows, img2.rows) ); Mat outImg;
Size img1size = img1.size(), img2size = img2.size();
Size size( img1size.width + img2size.width, MAX(img1size.height, img2size.height) );
if( flags & DrawMatchesFlags::DRAW_OVER_OUTIMG ) if( flags & DrawMatchesFlags::DRAW_OVER_OUTIMG )
{ {
outImg = _outImg.getMat();
if( size.width > outImg.cols || size.height > outImg.rows ) if( size.width > outImg.cols || size.height > outImg.rows )
CV_Error( Error::StsBadSize, "outImg has size less than need to draw img1 and img2 together" ); CV_Error( Error::StsBadSize, "outImg has size less than need to draw img1 and img2 together" );
outImg1 = outImg( Rect(0, 0, img1.cols, img1.rows) ); outImg1 = outImg( Rect(0, 0, img1size.width, img1size.height) );
outImg2 = outImg( Rect(img1.cols, 0, img2.cols, img2.rows) ); outImg2 = outImg( Rect(img1size.width, 0, img2size.width, img2size.height) );
} }
else else
{ {
outImg.create( size, CV_MAKETYPE(img1.depth(), 3) ); _outImg.create( size, CV_MAKETYPE(img1.depth(), 3) );
outImg = _outImg.getMat();
outImg = Scalar::all(0); outImg = Scalar::all(0);
outImg1 = outImg( Rect(0, 0, img1.cols, img1.rows) ); outImg1 = outImg( Rect(0, 0, img1size.width, img1size.height) );
outImg2 = outImg( Rect(img1.cols, 0, img2.cols, img2.rows) ); outImg2 = outImg( Rect(img1size.width, 0, img2size.width, img2size.height) );
if( img1.type() == CV_8U ) if( img1.type() == CV_8U )
cvtColor( img1, outImg1, COLOR_GRAY2BGR ); cvtColor( img1, outImg1, COLOR_GRAY2BGR );
@ -154,15 +158,15 @@ static void _prepareImgAndDrawKeypoints( const Mat& img1, const std::vector<KeyP
// draw keypoints // draw keypoints
if( !(flags & DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS) ) if( !(flags & DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS) )
{ {
Mat _outImg1 = outImg( Rect(0, 0, img1.cols, img1.rows) ); Mat _outImg1 = outImg( Rect(0, 0, img1size.width, img1size.height) );
drawKeypoints( _outImg1, keypoints1, _outImg1, singlePointColor, flags + DrawMatchesFlags::DRAW_OVER_OUTIMG ); drawKeypoints( _outImg1, keypoints1, _outImg1, singlePointColor, flags + DrawMatchesFlags::DRAW_OVER_OUTIMG );
Mat _outImg2 = outImg( Rect(img1.cols, 0, img2.cols, img2.rows) ); Mat _outImg2 = outImg( Rect(img1size.width, 0, img2size.width, img2size.height) );
drawKeypoints( _outImg2, keypoints2, _outImg2, singlePointColor, flags + DrawMatchesFlags::DRAW_OVER_OUTIMG ); drawKeypoints( _outImg2, keypoints2, _outImg2, singlePointColor, flags + DrawMatchesFlags::DRAW_OVER_OUTIMG );
} }
} }
static inline void _drawMatch( Mat& outImg, Mat& outImg1, Mat& outImg2 , static inline void _drawMatch( InputOutputArray outImg, InputOutputArray outImg1, InputOutputArray outImg2 ,
const KeyPoint& kp1, const KeyPoint& kp2, const Scalar& matchColor, int flags ) const KeyPoint& kp1, const KeyPoint& kp2, const Scalar& matchColor, int flags )
{ {
RNG& rng = theRNG(); RNG& rng = theRNG();
@ -174,7 +178,7 @@ static inline void _drawMatch( Mat& outImg, Mat& outImg1, Mat& outImg2 ,
Point2f pt1 = kp1.pt, Point2f pt1 = kp1.pt,
pt2 = kp2.pt, pt2 = kp2.pt,
dpt2 = Point2f( std::min(pt2.x+outImg1.cols, float(outImg.cols-1)), pt2.y ); dpt2 = Point2f( std::min(pt2.x+outImg1.size().width, float(outImg.size().width-1)), pt2.y );
line( outImg, line( outImg,
Point(cvRound(pt1.x*draw_multiplier), cvRound(pt1.y*draw_multiplier)), Point(cvRound(pt1.x*draw_multiplier), cvRound(pt1.y*draw_multiplier)),
@ -182,9 +186,9 @@ static inline void _drawMatch( Mat& outImg, Mat& outImg1, Mat& outImg2 ,
color, 1, LINE_AA, draw_shift_bits ); color, 1, LINE_AA, draw_shift_bits );
} }
void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1, void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
const Mat& img2, const std::vector<KeyPoint>& keypoints2, InputArray img2, const std::vector<KeyPoint>& keypoints2,
const std::vector<DMatch>& matches1to2, Mat& outImg, const std::vector<DMatch>& matches1to2, InputOutputArray outImg,
const Scalar& matchColor, const Scalar& singlePointColor, const Scalar& matchColor, const Scalar& singlePointColor,
const std::vector<char>& matchesMask, int flags ) const std::vector<char>& matchesMask, int flags )
{ {
@ -211,9 +215,9 @@ void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1,
} }
} }
void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1, void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
const Mat& img2, const std::vector<KeyPoint>& keypoints2, InputArray img2, const std::vector<KeyPoint>& keypoints2,
const std::vector<std::vector<DMatch> >& matches1to2, Mat& outImg, const std::vector<std::vector<DMatch> >& matches1to2, InputOutputArray outImg,
const Scalar& matchColor, const Scalar& singlePointColor, const Scalar& matchColor, const Scalar& singlePointColor,
const std::vector<std::vector<char> >& matchesMask, int flags ) const std::vector<std::vector<char> >& matchesMask, int flags )
{ {

View File

@ -229,9 +229,9 @@ void FREAK::buildPattern()
} }
} }
void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const void FREAK::computeImpl( InputArray _image, std::vector<KeyPoint>& keypoints, OutputArray _descriptors ) const
{ {
Mat image = _image.getMat();
if( image.empty() ) if( image.empty() )
return; return;
if( keypoints.empty() ) if( keypoints.empty() )
@ -297,7 +297,9 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
if( !extAll ) if( !extAll )
{ {
// extract the best comparisons only // extract the best comparisons only
descriptors = cv::Mat::zeros((int)keypoints.size(), FREAK_NB_PAIRS/8, CV_8U); _descriptors.create((int)keypoints.size(), FREAK_NB_PAIRS/8, CV_8U);
_descriptors.setTo(Scalar::all(0));
Mat descriptors = _descriptors.getMat();
#if CV_SSE2 #if CV_SSE2
__m128i* ptr= (__m128i*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]); __m128i* ptr= (__m128i*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);
#else #else
@ -415,7 +417,9 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
} }
else // extract all possible comparisons for selection else // extract all possible comparisons for selection
{ {
descriptors = cv::Mat::zeros((int)keypoints.size(), 128, CV_8U); _descriptors.create((int)keypoints.size(), 128, CV_8U);
_descriptors.setTo(Scalar::all(0));
Mat descriptors = _descriptors.getMat();
std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]); std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);
for( size_t k = keypoints.size(); k--; ) for( size_t k = keypoints.size(); k--; )
@ -474,13 +478,14 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
} }
// simply take average on a square patch, not even gaussian approx // simply take average on a square patch, not even gaussian approx
uchar FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral, uchar FREAK::meanIntensity( InputArray _image, InputArray _integral,
const float kp_x, const float kp_x,
const float kp_y, const float kp_y,
const unsigned int scale, const unsigned int scale,
const unsigned int rot, const unsigned int rot,
const unsigned int point) const const unsigned int point) const
{ {
Mat image = _image.getMat(), integral = _integral.getMat();
// get point position in image // get point position in image
const PatternPoint& FreakPoint = patternLookup[scale*FREAK_NB_ORIENTATION*FREAK_NB_POINTS + rot*FREAK_NB_POINTS + point]; const PatternPoint& FreakPoint = patternLookup[scale*FREAK_NB_ORIENTATION*FREAK_NB_POINTS + rot*FREAK_NB_POINTS + point];
const float xf = FreakPoint.x+kp_x; const float xf = FreakPoint.x+kp_x;

View File

@ -1617,9 +1617,11 @@ GenericDescriptorMatcher::GenericDescriptorMatcher()
GenericDescriptorMatcher::~GenericDescriptorMatcher() GenericDescriptorMatcher::~GenericDescriptorMatcher()
{} {}
void GenericDescriptorMatcher::add( const std::vector<Mat>& images, void GenericDescriptorMatcher::add( InputArrayOfArrays _images,
std::vector<std::vector<KeyPoint> >& keypoints ) std::vector<std::vector<KeyPoint> >& keypoints )
{ {
std::vector<Mat> images;
_images.getMatVector(images);
CV_Assert( !images.empty() ); CV_Assert( !images.empty() );
CV_Assert( images.size() == keypoints.size() ); CV_Assert( images.size() == keypoints.size() );
@ -1651,8 +1653,8 @@ void GenericDescriptorMatcher::clear()
void GenericDescriptorMatcher::train() void GenericDescriptorMatcher::train()
{} {}
void GenericDescriptorMatcher::classify( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void GenericDescriptorMatcher::classify( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints ) const InputArray trainImage, std::vector<KeyPoint>& trainKeypoints ) const
{ {
std::vector<DMatch> matches; std::vector<DMatch> matches;
match( queryImage, queryKeypoints, trainImage, trainKeypoints, matches ); match( queryImage, queryKeypoints, trainImage, trainKeypoints, matches );
@ -1662,7 +1664,7 @@ void GenericDescriptorMatcher::classify( const Mat& queryImage, std::vector<KeyP
queryKeypoints[matches[i].queryIdx].class_id = trainKeypoints[matches[i].trainIdx].class_id; queryKeypoints[matches[i].queryIdx].class_id = trainKeypoints[matches[i].trainIdx].class_id;
} }
void GenericDescriptorMatcher::classify( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints ) void GenericDescriptorMatcher::classify( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints )
{ {
std::vector<DMatch> matches; std::vector<DMatch> matches;
match( queryImage, queryKeypoints, matches ); match( queryImage, queryKeypoints, matches );
@ -1672,10 +1674,11 @@ void GenericDescriptorMatcher::classify( const Mat& queryImage, std::vector<KeyP
queryKeypoints[matches[i].queryIdx].class_id = trainPointCollection.getKeyPoint( matches[i].trainIdx, matches[i].trainIdx ).class_id; queryKeypoints[matches[i].queryIdx].class_id = trainPointCollection.getKeyPoint( matches[i].trainIdx, matches[i].trainIdx ).class_id;
} }
void GenericDescriptorMatcher::match( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void GenericDescriptorMatcher::match( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints, InputArray _trainImage, std::vector<KeyPoint>& trainKeypoints,
std::vector<DMatch>& matches, const Mat& mask ) const std::vector<DMatch>& matches, const Mat& mask ) const
{ {
Mat trainImage = _trainImage.getMat();
Ptr<GenericDescriptorMatcher> tempMatcher = clone( true ); Ptr<GenericDescriptorMatcher> tempMatcher = clone( true );
std::vector<std::vector<KeyPoint> > vecTrainPoints(1, trainKeypoints); std::vector<std::vector<KeyPoint> > vecTrainPoints(1, trainKeypoints);
tempMatcher->add( std::vector<Mat>(1, trainImage), vecTrainPoints ); tempMatcher->add( std::vector<Mat>(1, trainImage), vecTrainPoints );
@ -1683,10 +1686,11 @@ void GenericDescriptorMatcher::match( const Mat& queryImage, std::vector<KeyPoin
vecTrainPoints[0].swap( trainKeypoints ); vecTrainPoints[0].swap( trainKeypoints );
} }
void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void GenericDescriptorMatcher::knnMatch( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints, InputArray _trainImage, std::vector<KeyPoint>& trainKeypoints,
std::vector<std::vector<DMatch> >& matches, int knn, const Mat& mask, bool compactResult ) const std::vector<std::vector<DMatch> >& matches, int knn, const Mat& mask, bool compactResult ) const
{ {
Mat trainImage = _trainImage.getMat();
Ptr<GenericDescriptorMatcher> tempMatcher = clone( true ); Ptr<GenericDescriptorMatcher> tempMatcher = clone( true );
std::vector<std::vector<KeyPoint> > vecTrainPoints(1, trainKeypoints); std::vector<std::vector<KeyPoint> > vecTrainPoints(1, trainKeypoints);
tempMatcher->add( std::vector<Mat>(1, trainImage), vecTrainPoints ); tempMatcher->add( std::vector<Mat>(1, trainImage), vecTrainPoints );
@ -1694,11 +1698,12 @@ void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, std::vector<KeyP
vecTrainPoints[0].swap( trainKeypoints ); vecTrainPoints[0].swap( trainKeypoints );
} }
void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void GenericDescriptorMatcher::radiusMatch( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints, InputArray _trainImage, std::vector<KeyPoint>& trainKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance, std::vector<std::vector<DMatch> >& matches, float maxDistance,
const Mat& mask, bool compactResult ) const const Mat& mask, bool compactResult ) const
{ {
Mat trainImage = _trainImage.getMat();
Ptr<GenericDescriptorMatcher> tempMatcher = clone( true ); Ptr<GenericDescriptorMatcher> tempMatcher = clone( true );
std::vector<std::vector<KeyPoint> > vecTrainPoints(1, trainKeypoints); std::vector<std::vector<KeyPoint> > vecTrainPoints(1, trainKeypoints);
tempMatcher->add( std::vector<Mat>(1, trainImage), vecTrainPoints ); tempMatcher->add( std::vector<Mat>(1, trainImage), vecTrainPoints );
@ -1706,7 +1711,7 @@ void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, std::vector<K
vecTrainPoints[0].swap( trainKeypoints ); vecTrainPoints[0].swap( trainKeypoints );
} }
void GenericDescriptorMatcher::match( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void GenericDescriptorMatcher::match( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<DMatch>& matches, const std::vector<Mat>& masks ) std::vector<DMatch>& matches, const std::vector<Mat>& masks )
{ {
std::vector<std::vector<DMatch> > knnMatches; std::vector<std::vector<DMatch> > knnMatches;
@ -1714,7 +1719,7 @@ void GenericDescriptorMatcher::match( const Mat& queryImage, std::vector<KeyPoin
convertMatches( knnMatches, matches ); convertMatches( knnMatches, matches );
} }
void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void GenericDescriptorMatcher::knnMatch( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int knn, std::vector<std::vector<DMatch> >& matches, int knn,
const std::vector<Mat>& masks, bool compactResult ) const std::vector<Mat>& masks, bool compactResult )
{ {
@ -1730,7 +1735,7 @@ void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, std::vector<KeyP
knnMatchImpl( queryImage, queryKeypoints, matches, knn, masks, compactResult ); knnMatchImpl( queryImage, queryKeypoints, matches, knn, masks, compactResult );
} }
void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void GenericDescriptorMatcher::radiusMatch( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance, std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& masks, bool compactResult ) const std::vector<Mat>& masks, bool compactResult )
{ {
@ -1792,10 +1797,11 @@ VectorDescriptorMatcher::VectorDescriptorMatcher( const Ptr<DescriptorExtractor>
VectorDescriptorMatcher::~VectorDescriptorMatcher() VectorDescriptorMatcher::~VectorDescriptorMatcher()
{} {}
void VectorDescriptorMatcher::add( const std::vector<Mat>& imgCollection, void VectorDescriptorMatcher::add( InputArrayOfArrays _imgCollection,
std::vector<std::vector<KeyPoint> >& pointCollection ) std::vector<std::vector<KeyPoint> >& pointCollection )
{ {
std::vector<Mat> descriptors; std::vector<Mat> imgCollection, descriptors;
_imgCollection.getMatVector(imgCollection);
extractor->compute( imgCollection, pointCollection, descriptors ); extractor->compute( imgCollection, pointCollection, descriptors );
matcher->add( descriptors ); matcher->add( descriptors );
@ -1820,7 +1826,7 @@ bool VectorDescriptorMatcher::isMaskSupported()
return matcher->isMaskSupported(); return matcher->isMaskSupported();
} }
void VectorDescriptorMatcher::knnMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void VectorDescriptorMatcher::knnMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int knn, std::vector<std::vector<DMatch> >& matches, int knn,
const std::vector<Mat>& masks, bool compactResult ) const std::vector<Mat>& masks, bool compactResult )
{ {
@ -1829,7 +1835,7 @@ void VectorDescriptorMatcher::knnMatchImpl( const Mat& queryImage, std::vector<K
matcher->knnMatch( queryDescriptors, matches, knn, masks, compactResult ); matcher->knnMatch( queryDescriptors, matches, knn, masks, compactResult );
} }
void VectorDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void VectorDescriptorMatcher::radiusMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance, std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& masks, bool compactResult ) const std::vector<Mat>& masks, bool compactResult )
{ {

View File

@ -948,7 +948,7 @@ void ORB::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputA
(*this)(image.getMat(), mask.getMat(), keypoints, noArray(), false); (*this)(image.getMat(), mask.getMat(), keypoints, noArray(), false);
} }
void ORB::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const void ORB::computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
{ {
(*this)(image, Mat(), keypoints, descriptors, true); (*this)(image, Mat(), keypoints, descriptors, true);
} }

View File

@ -2672,10 +2672,10 @@ protected:
// The minimum distance to each training patch with all its affine poses is found over all scales. // The minimum distance to each training patch with all its affine poses is found over all scales.
// The class ID of a match is returned for each keypoint. The distance is calculated over PCA components // The class ID of a match is returned for each keypoint. The distance is calculated over PCA components
// loaded with DescriptorOneWay::Initialize, kd tree is used for finding minimum distances. // loaded with DescriptorOneWay::Initialize, kd tree is used for finding minimum distances.
virtual void knnMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, virtual void knnMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int k, std::vector<std::vector<DMatch> >& matches, int k,
const std::vector<Mat>& masks, bool compactResult ); const std::vector<Mat>& masks, bool compactResult );
virtual void radiusMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, virtual void radiusMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance, std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& masks, bool compactResult ); const std::vector<Mat>& masks, bool compactResult );
@ -2735,10 +2735,10 @@ public:
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const; virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected: protected:
virtual void knnMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, virtual void knnMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int k, std::vector<std::vector<DMatch> >& matches, int k,
const std::vector<Mat>& masks, bool compactResult ); const std::vector<Mat>& masks, bool compactResult );
virtual void radiusMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, virtual void radiusMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance, std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& masks, bool compactResult ); const std::vector<Mat>& masks, bool compactResult );
@ -2770,7 +2770,7 @@ public:
virtual bool empty() const; virtual bool empty() const;
protected: protected:
virtual void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const; virtual void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
RTreeClassifier classifier_; RTreeClassifier classifier_;
static const int BORDER_SIZE = 16; static const int BORDER_SIZE = 16;
@ -2783,15 +2783,17 @@ CalonderDescriptorExtractor<T>::CalonderDescriptorExtractor(const String& classi
} }
template<typename T> template<typename T>
void CalonderDescriptorExtractor<T>::computeImpl( const Mat& image, void CalonderDescriptorExtractor<T>::computeImpl( InputArray _image,
std::vector<KeyPoint>& keypoints, std::vector<KeyPoint>& keypoints,
Mat& descriptors) const OutputArray _descriptors) const
{ {
Mat image = _image.getMat(), descriptors;
// Cannot compute descriptors for keypoints on the image border. // Cannot compute descriptors for keypoints on the image border.
KeyPointsFilter::runByImageBorder(keypoints, image.size(), BORDER_SIZE); KeyPointsFilter::runByImageBorder(keypoints, image.size(), BORDER_SIZE);
/// @todo Check 16-byte aligned /// @todo Check 16-byte aligned
descriptors.create((int)keypoints.size(), classifier_.classes(), cv::DataType<T>::type); _descriptors.create((int)keypoints.size(), classifier_.classes(), cv::DataType<T>::type);
descriptors = _descriptors.getMat();
int patchSize = RandomizedTree::PATCH_SIZE; int patchSize = RandomizedTree::PATCH_SIZE;
int offset = patchSize / 2; int offset = patchSize / 2;

View File

@ -2232,10 +2232,11 @@ namespace cv{
return false; return false;
} }
void OneWayDescriptorMatcher::knnMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void OneWayDescriptorMatcher::knnMatchImpl( InputArray _queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int knn, std::vector<std::vector<DMatch> >& matches, int knn,
const std::vector<Mat>& /*masks*/, bool /*compactResult*/ ) const std::vector<Mat>& /*masks*/, bool /*compactResult*/ )
{ {
Mat queryImage = _queryImage.getMat();
train(); train();
CV_Assert( knn == 1 ); // knn > 1 unsupported because of bug in OneWayDescriptorBase for this case CV_Assert( knn == 1 ); // knn > 1 unsupported because of bug in OneWayDescriptorBase for this case
@ -2251,10 +2252,12 @@ namespace cv{
} }
} }
void OneWayDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void OneWayDescriptorMatcher::radiusMatchImpl( InputArray _queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance, std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& /*masks*/, bool /*compactResult*/ ) const std::vector<Mat>& /*masks*/, bool /*compactResult*/ )
{ {
Mat queryImage = _queryImage.getMat();
train(); train();
matches.resize( queryKeypoints.size() ); matches.resize( queryKeypoints.size() );

View File

@ -1297,10 +1297,12 @@ void FernDescriptorMatcher::calcBestProbAndMatchIdx( const Mat& image, const Poi
} }
} }
void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void FernDescriptorMatcher::knnMatchImpl( InputArray _queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int knn, std::vector<std::vector<DMatch> >& matches, int knn,
const std::vector<Mat>& /*masks*/, bool /*compactResult*/ ) const std::vector<Mat>& /*masks*/, bool /*compactResult*/ )
{ {
Mat queryImage = _queryImage.getMat();
train(); train();
matches.resize( queryKeypoints.size() ); matches.resize( queryKeypoints.size() );
@ -1333,10 +1335,11 @@ void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImage, std::vector<Key
} }
} }
void FernDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints, void FernDescriptorMatcher::radiusMatchImpl( InputArray _queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance, std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& /*masks*/, bool /*compactResult*/ ) const std::vector<Mat>& /*masks*/, bool /*compactResult*/ )
{ {
Mat queryImage = _queryImage.getMat();
train(); train();
matches.resize( queryKeypoints.size() ); matches.resize( queryKeypoints.size() );
std::vector<float> signature( (size_t)classifier->getClassCount() ); std::vector<float> signature( (size_t)classifier->getClassCount() );

View File

@ -88,7 +88,7 @@ public:
protected: protected:
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask = noArray() ) const; void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask = noArray() ) const;
void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const; void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
CV_PROP_RW int nfeatures; CV_PROP_RW int nfeatures;
CV_PROP_RW int nOctaveLayers; CV_PROP_RW int nOctaveLayers;
@ -143,7 +143,7 @@ public:
protected: protected:
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask = noArray() ) const; void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask = noArray() ) const;
void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const; void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
}; };
typedef SURF SurfFeatureDetector; typedef SURF SurfFeatureDetector;

View File

@ -823,7 +823,7 @@ void SIFT::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, Input
(*this)(image.getMat(), mask.getMat(), keypoints, noArray()); (*this)(image.getMat(), mask.getMat(), keypoints, noArray());
} }
void SIFT::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const void SIFT::computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
{ {
(*this)(image, Mat(), keypoints, descriptors, true); (*this)(image, Mat(), keypoints, descriptors, true);
} }

View File

@ -1016,7 +1016,7 @@ void SURF::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, Input
(*this)(image.getMat(), mask.getMat(), keypoints, noArray(), false); (*this)(image.getMat(), mask.getMat(), keypoints, noArray(), false);
} }
void SURF::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const void SURF::computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
{ {
(*this)(image, Mat(), keypoints, descriptors, true); (*this)(image, Mat(), keypoints, descriptors, true);
} }