From b4dafa6b587668b883a600a7446cc90ef58c0430 Mon Sep 17 00:00:00 2001 From: Alexander Mordvintsev Date: Mon, 18 Jun 2012 11:38:47 +0000 Subject: [PATCH] fixed SVM train_auto docs: "train set" <-> "test set" --- modules/ml/doc/support_vector_machines.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/ml/doc/support_vector_machines.rst b/modules/ml/doc/support_vector_machines.rst index 670ad1e0b..bf88ec68c 100644 --- a/modules/ml/doc/support_vector_machines.rst +++ b/modules/ml/doc/support_vector_machines.rst @@ -198,7 +198,7 @@ Trains an SVM with optimal parameters. .. ocv:pyfunction:: cv2.SVM.train_auto(trainData, responses, varIdx, sampleIdx, params[, k_fold[, Cgrid[, gammaGrid[, pGrid[, nuGrid[, coeffGrid[, degreeGrid[, balanced]]]]]]]]) -> retval - :param k_fold: Cross-validation parameter. The training set is divided into ``k_fold`` subsets. One subset is used to train the model, the others form the test set. So, the SVM algorithm is executed ``k_fold`` times. + :param k_fold: Cross-validation parameter. The training set is divided into ``k_fold`` subsets. One subset is used to test the model, the others form the train set. So, the SVM algorithm is executed ``k_fold`` times. :param \*Grid: Iteration grid for the corresponding SVM parameter.