HAL: improvements
- added new functions from core module: split, merge, add, sub, mul, div, ... - added function replacement mechanism - added example of HAL replacement library
This commit is contained in:
@@ -762,6 +762,4 @@ inline float32x2_t cv_vsqrt_f32(float32x2_t val)
|
||||
|
||||
} // cv
|
||||
|
||||
#include "sse_utils.hpp"
|
||||
|
||||
#endif //__OPENCV_CORE_BASE_HPP__
|
||||
|
@@ -1,645 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2015, Itseez Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_CORE_SSE_UTILS_HPP__
|
||||
#define __OPENCV_CORE_SSE_UTILS_HPP__
|
||||
|
||||
#ifndef __cplusplus
|
||||
# error sse_utils.hpp header must be compiled as C++
|
||||
#endif
|
||||
|
||||
#if CV_SSE2
|
||||
|
||||
inline void _mm_deinterleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1)
|
||||
{
|
||||
__m128i layer1_chunk0 = _mm_unpacklo_epi8(v_r0, v_g0);
|
||||
__m128i layer1_chunk1 = _mm_unpackhi_epi8(v_r0, v_g0);
|
||||
__m128i layer1_chunk2 = _mm_unpacklo_epi8(v_r1, v_g1);
|
||||
__m128i layer1_chunk3 = _mm_unpackhi_epi8(v_r1, v_g1);
|
||||
|
||||
__m128i layer2_chunk0 = _mm_unpacklo_epi8(layer1_chunk0, layer1_chunk2);
|
||||
__m128i layer2_chunk1 = _mm_unpackhi_epi8(layer1_chunk0, layer1_chunk2);
|
||||
__m128i layer2_chunk2 = _mm_unpacklo_epi8(layer1_chunk1, layer1_chunk3);
|
||||
__m128i layer2_chunk3 = _mm_unpackhi_epi8(layer1_chunk1, layer1_chunk3);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_unpacklo_epi8(layer2_chunk0, layer2_chunk2);
|
||||
__m128i layer3_chunk1 = _mm_unpackhi_epi8(layer2_chunk0, layer2_chunk2);
|
||||
__m128i layer3_chunk2 = _mm_unpacklo_epi8(layer2_chunk1, layer2_chunk3);
|
||||
__m128i layer3_chunk3 = _mm_unpackhi_epi8(layer2_chunk1, layer2_chunk3);
|
||||
|
||||
__m128i layer4_chunk0 = _mm_unpacklo_epi8(layer3_chunk0, layer3_chunk2);
|
||||
__m128i layer4_chunk1 = _mm_unpackhi_epi8(layer3_chunk0, layer3_chunk2);
|
||||
__m128i layer4_chunk2 = _mm_unpacklo_epi8(layer3_chunk1, layer3_chunk3);
|
||||
__m128i layer4_chunk3 = _mm_unpackhi_epi8(layer3_chunk1, layer3_chunk3);
|
||||
|
||||
v_r0 = _mm_unpacklo_epi8(layer4_chunk0, layer4_chunk2);
|
||||
v_r1 = _mm_unpackhi_epi8(layer4_chunk0, layer4_chunk2);
|
||||
v_g0 = _mm_unpacklo_epi8(layer4_chunk1, layer4_chunk3);
|
||||
v_g1 = _mm_unpackhi_epi8(layer4_chunk1, layer4_chunk3);
|
||||
}
|
||||
|
||||
inline void _mm_deinterleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0,
|
||||
__m128i & v_g1, __m128i & v_b0, __m128i & v_b1)
|
||||
{
|
||||
__m128i layer1_chunk0 = _mm_unpacklo_epi8(v_r0, v_g1);
|
||||
__m128i layer1_chunk1 = _mm_unpackhi_epi8(v_r0, v_g1);
|
||||
__m128i layer1_chunk2 = _mm_unpacklo_epi8(v_r1, v_b0);
|
||||
__m128i layer1_chunk3 = _mm_unpackhi_epi8(v_r1, v_b0);
|
||||
__m128i layer1_chunk4 = _mm_unpacklo_epi8(v_g0, v_b1);
|
||||
__m128i layer1_chunk5 = _mm_unpackhi_epi8(v_g0, v_b1);
|
||||
|
||||
__m128i layer2_chunk0 = _mm_unpacklo_epi8(layer1_chunk0, layer1_chunk3);
|
||||
__m128i layer2_chunk1 = _mm_unpackhi_epi8(layer1_chunk0, layer1_chunk3);
|
||||
__m128i layer2_chunk2 = _mm_unpacklo_epi8(layer1_chunk1, layer1_chunk4);
|
||||
__m128i layer2_chunk3 = _mm_unpackhi_epi8(layer1_chunk1, layer1_chunk4);
|
||||
__m128i layer2_chunk4 = _mm_unpacklo_epi8(layer1_chunk2, layer1_chunk5);
|
||||
__m128i layer2_chunk5 = _mm_unpackhi_epi8(layer1_chunk2, layer1_chunk5);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_unpacklo_epi8(layer2_chunk0, layer2_chunk3);
|
||||
__m128i layer3_chunk1 = _mm_unpackhi_epi8(layer2_chunk0, layer2_chunk3);
|
||||
__m128i layer3_chunk2 = _mm_unpacklo_epi8(layer2_chunk1, layer2_chunk4);
|
||||
__m128i layer3_chunk3 = _mm_unpackhi_epi8(layer2_chunk1, layer2_chunk4);
|
||||
__m128i layer3_chunk4 = _mm_unpacklo_epi8(layer2_chunk2, layer2_chunk5);
|
||||
__m128i layer3_chunk5 = _mm_unpackhi_epi8(layer2_chunk2, layer2_chunk5);
|
||||
|
||||
__m128i layer4_chunk0 = _mm_unpacklo_epi8(layer3_chunk0, layer3_chunk3);
|
||||
__m128i layer4_chunk1 = _mm_unpackhi_epi8(layer3_chunk0, layer3_chunk3);
|
||||
__m128i layer4_chunk2 = _mm_unpacklo_epi8(layer3_chunk1, layer3_chunk4);
|
||||
__m128i layer4_chunk3 = _mm_unpackhi_epi8(layer3_chunk1, layer3_chunk4);
|
||||
__m128i layer4_chunk4 = _mm_unpacklo_epi8(layer3_chunk2, layer3_chunk5);
|
||||
__m128i layer4_chunk5 = _mm_unpackhi_epi8(layer3_chunk2, layer3_chunk5);
|
||||
|
||||
v_r0 = _mm_unpacklo_epi8(layer4_chunk0, layer4_chunk3);
|
||||
v_r1 = _mm_unpackhi_epi8(layer4_chunk0, layer4_chunk3);
|
||||
v_g0 = _mm_unpacklo_epi8(layer4_chunk1, layer4_chunk4);
|
||||
v_g1 = _mm_unpackhi_epi8(layer4_chunk1, layer4_chunk4);
|
||||
v_b0 = _mm_unpacklo_epi8(layer4_chunk2, layer4_chunk5);
|
||||
v_b1 = _mm_unpackhi_epi8(layer4_chunk2, layer4_chunk5);
|
||||
}
|
||||
|
||||
inline void _mm_deinterleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1,
|
||||
__m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1)
|
||||
{
|
||||
__m128i layer1_chunk0 = _mm_unpacklo_epi8(v_r0, v_b0);
|
||||
__m128i layer1_chunk1 = _mm_unpackhi_epi8(v_r0, v_b0);
|
||||
__m128i layer1_chunk2 = _mm_unpacklo_epi8(v_r1, v_b1);
|
||||
__m128i layer1_chunk3 = _mm_unpackhi_epi8(v_r1, v_b1);
|
||||
__m128i layer1_chunk4 = _mm_unpacklo_epi8(v_g0, v_a0);
|
||||
__m128i layer1_chunk5 = _mm_unpackhi_epi8(v_g0, v_a0);
|
||||
__m128i layer1_chunk6 = _mm_unpacklo_epi8(v_g1, v_a1);
|
||||
__m128i layer1_chunk7 = _mm_unpackhi_epi8(v_g1, v_a1);
|
||||
|
||||
__m128i layer2_chunk0 = _mm_unpacklo_epi8(layer1_chunk0, layer1_chunk4);
|
||||
__m128i layer2_chunk1 = _mm_unpackhi_epi8(layer1_chunk0, layer1_chunk4);
|
||||
__m128i layer2_chunk2 = _mm_unpacklo_epi8(layer1_chunk1, layer1_chunk5);
|
||||
__m128i layer2_chunk3 = _mm_unpackhi_epi8(layer1_chunk1, layer1_chunk5);
|
||||
__m128i layer2_chunk4 = _mm_unpacklo_epi8(layer1_chunk2, layer1_chunk6);
|
||||
__m128i layer2_chunk5 = _mm_unpackhi_epi8(layer1_chunk2, layer1_chunk6);
|
||||
__m128i layer2_chunk6 = _mm_unpacklo_epi8(layer1_chunk3, layer1_chunk7);
|
||||
__m128i layer2_chunk7 = _mm_unpackhi_epi8(layer1_chunk3, layer1_chunk7);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_unpacklo_epi8(layer2_chunk0, layer2_chunk4);
|
||||
__m128i layer3_chunk1 = _mm_unpackhi_epi8(layer2_chunk0, layer2_chunk4);
|
||||
__m128i layer3_chunk2 = _mm_unpacklo_epi8(layer2_chunk1, layer2_chunk5);
|
||||
__m128i layer3_chunk3 = _mm_unpackhi_epi8(layer2_chunk1, layer2_chunk5);
|
||||
__m128i layer3_chunk4 = _mm_unpacklo_epi8(layer2_chunk2, layer2_chunk6);
|
||||
__m128i layer3_chunk5 = _mm_unpackhi_epi8(layer2_chunk2, layer2_chunk6);
|
||||
__m128i layer3_chunk6 = _mm_unpacklo_epi8(layer2_chunk3, layer2_chunk7);
|
||||
__m128i layer3_chunk7 = _mm_unpackhi_epi8(layer2_chunk3, layer2_chunk7);
|
||||
|
||||
__m128i layer4_chunk0 = _mm_unpacklo_epi8(layer3_chunk0, layer3_chunk4);
|
||||
__m128i layer4_chunk1 = _mm_unpackhi_epi8(layer3_chunk0, layer3_chunk4);
|
||||
__m128i layer4_chunk2 = _mm_unpacklo_epi8(layer3_chunk1, layer3_chunk5);
|
||||
__m128i layer4_chunk3 = _mm_unpackhi_epi8(layer3_chunk1, layer3_chunk5);
|
||||
__m128i layer4_chunk4 = _mm_unpacklo_epi8(layer3_chunk2, layer3_chunk6);
|
||||
__m128i layer4_chunk5 = _mm_unpackhi_epi8(layer3_chunk2, layer3_chunk6);
|
||||
__m128i layer4_chunk6 = _mm_unpacklo_epi8(layer3_chunk3, layer3_chunk7);
|
||||
__m128i layer4_chunk7 = _mm_unpackhi_epi8(layer3_chunk3, layer3_chunk7);
|
||||
|
||||
v_r0 = _mm_unpacklo_epi8(layer4_chunk0, layer4_chunk4);
|
||||
v_r1 = _mm_unpackhi_epi8(layer4_chunk0, layer4_chunk4);
|
||||
v_g0 = _mm_unpacklo_epi8(layer4_chunk1, layer4_chunk5);
|
||||
v_g1 = _mm_unpackhi_epi8(layer4_chunk1, layer4_chunk5);
|
||||
v_b0 = _mm_unpacklo_epi8(layer4_chunk2, layer4_chunk6);
|
||||
v_b1 = _mm_unpackhi_epi8(layer4_chunk2, layer4_chunk6);
|
||||
v_a0 = _mm_unpacklo_epi8(layer4_chunk3, layer4_chunk7);
|
||||
v_a1 = _mm_unpackhi_epi8(layer4_chunk3, layer4_chunk7);
|
||||
}
|
||||
|
||||
inline void _mm_interleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1)
|
||||
{
|
||||
__m128i v_mask = _mm_set1_epi16(0x00ff);
|
||||
|
||||
__m128i layer4_chunk0 = _mm_packus_epi16(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask));
|
||||
__m128i layer4_chunk2 = _mm_packus_epi16(_mm_srli_epi16(v_r0, 8), _mm_srli_epi16(v_r1, 8));
|
||||
__m128i layer4_chunk1 = _mm_packus_epi16(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask));
|
||||
__m128i layer4_chunk3 = _mm_packus_epi16(_mm_srli_epi16(v_g0, 8), _mm_srli_epi16(v_g1, 8));
|
||||
|
||||
__m128i layer3_chunk0 = _mm_packus_epi16(_mm_and_si128(layer4_chunk0, v_mask), _mm_and_si128(layer4_chunk1, v_mask));
|
||||
__m128i layer3_chunk2 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk0, 8), _mm_srli_epi16(layer4_chunk1, 8));
|
||||
__m128i layer3_chunk1 = _mm_packus_epi16(_mm_and_si128(layer4_chunk2, v_mask), _mm_and_si128(layer4_chunk3, v_mask));
|
||||
__m128i layer3_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk2, 8), _mm_srli_epi16(layer4_chunk3, 8));
|
||||
|
||||
__m128i layer2_chunk0 = _mm_packus_epi16(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask));
|
||||
__m128i layer2_chunk2 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk0, 8), _mm_srli_epi16(layer3_chunk1, 8));
|
||||
__m128i layer2_chunk1 = _mm_packus_epi16(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask));
|
||||
__m128i layer2_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk2, 8), _mm_srli_epi16(layer3_chunk3, 8));
|
||||
|
||||
__m128i layer1_chunk0 = _mm_packus_epi16(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask));
|
||||
__m128i layer1_chunk2 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk0, 8), _mm_srli_epi16(layer2_chunk1, 8));
|
||||
__m128i layer1_chunk1 = _mm_packus_epi16(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask));
|
||||
__m128i layer1_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk2, 8), _mm_srli_epi16(layer2_chunk3, 8));
|
||||
|
||||
v_r0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask));
|
||||
v_g0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk0, 8), _mm_srli_epi16(layer1_chunk1, 8));
|
||||
v_r1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask));
|
||||
v_g1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk2, 8), _mm_srli_epi16(layer1_chunk3, 8));
|
||||
}
|
||||
|
||||
inline void _mm_interleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0,
|
||||
__m128i & v_g1, __m128i & v_b0, __m128i & v_b1)
|
||||
{
|
||||
__m128i v_mask = _mm_set1_epi16(0x00ff);
|
||||
|
||||
__m128i layer4_chunk0 = _mm_packus_epi16(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask));
|
||||
__m128i layer4_chunk3 = _mm_packus_epi16(_mm_srli_epi16(v_r0, 8), _mm_srli_epi16(v_r1, 8));
|
||||
__m128i layer4_chunk1 = _mm_packus_epi16(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask));
|
||||
__m128i layer4_chunk4 = _mm_packus_epi16(_mm_srli_epi16(v_g0, 8), _mm_srli_epi16(v_g1, 8));
|
||||
__m128i layer4_chunk2 = _mm_packus_epi16(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask));
|
||||
__m128i layer4_chunk5 = _mm_packus_epi16(_mm_srli_epi16(v_b0, 8), _mm_srli_epi16(v_b1, 8));
|
||||
|
||||
__m128i layer3_chunk0 = _mm_packus_epi16(_mm_and_si128(layer4_chunk0, v_mask), _mm_and_si128(layer4_chunk1, v_mask));
|
||||
__m128i layer3_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk0, 8), _mm_srli_epi16(layer4_chunk1, 8));
|
||||
__m128i layer3_chunk1 = _mm_packus_epi16(_mm_and_si128(layer4_chunk2, v_mask), _mm_and_si128(layer4_chunk3, v_mask));
|
||||
__m128i layer3_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk2, 8), _mm_srli_epi16(layer4_chunk3, 8));
|
||||
__m128i layer3_chunk2 = _mm_packus_epi16(_mm_and_si128(layer4_chunk4, v_mask), _mm_and_si128(layer4_chunk5, v_mask));
|
||||
__m128i layer3_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk4, 8), _mm_srli_epi16(layer4_chunk5, 8));
|
||||
|
||||
__m128i layer2_chunk0 = _mm_packus_epi16(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask));
|
||||
__m128i layer2_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk0, 8), _mm_srli_epi16(layer3_chunk1, 8));
|
||||
__m128i layer2_chunk1 = _mm_packus_epi16(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask));
|
||||
__m128i layer2_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk2, 8), _mm_srli_epi16(layer3_chunk3, 8));
|
||||
__m128i layer2_chunk2 = _mm_packus_epi16(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask));
|
||||
__m128i layer2_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk4, 8), _mm_srli_epi16(layer3_chunk5, 8));
|
||||
|
||||
__m128i layer1_chunk0 = _mm_packus_epi16(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask));
|
||||
__m128i layer1_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk0, 8), _mm_srli_epi16(layer2_chunk1, 8));
|
||||
__m128i layer1_chunk1 = _mm_packus_epi16(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask));
|
||||
__m128i layer1_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk2, 8), _mm_srli_epi16(layer2_chunk3, 8));
|
||||
__m128i layer1_chunk2 = _mm_packus_epi16(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask));
|
||||
__m128i layer1_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk4, 8), _mm_srli_epi16(layer2_chunk5, 8));
|
||||
|
||||
v_r0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask));
|
||||
v_g1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk0, 8), _mm_srli_epi16(layer1_chunk1, 8));
|
||||
v_r1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask));
|
||||
v_b0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk2, 8), _mm_srli_epi16(layer1_chunk3, 8));
|
||||
v_g0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask));
|
||||
v_b1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk4, 8), _mm_srli_epi16(layer1_chunk5, 8));
|
||||
}
|
||||
|
||||
inline void _mm_interleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1,
|
||||
__m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1)
|
||||
{
|
||||
__m128i v_mask = _mm_set1_epi16(0x00ff);
|
||||
|
||||
__m128i layer4_chunk0 = _mm_packus_epi16(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask));
|
||||
__m128i layer4_chunk4 = _mm_packus_epi16(_mm_srli_epi16(v_r0, 8), _mm_srli_epi16(v_r1, 8));
|
||||
__m128i layer4_chunk1 = _mm_packus_epi16(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask));
|
||||
__m128i layer4_chunk5 = _mm_packus_epi16(_mm_srli_epi16(v_g0, 8), _mm_srli_epi16(v_g1, 8));
|
||||
__m128i layer4_chunk2 = _mm_packus_epi16(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask));
|
||||
__m128i layer4_chunk6 = _mm_packus_epi16(_mm_srli_epi16(v_b0, 8), _mm_srli_epi16(v_b1, 8));
|
||||
__m128i layer4_chunk3 = _mm_packus_epi16(_mm_and_si128(v_a0, v_mask), _mm_and_si128(v_a1, v_mask));
|
||||
__m128i layer4_chunk7 = _mm_packus_epi16(_mm_srli_epi16(v_a0, 8), _mm_srli_epi16(v_a1, 8));
|
||||
|
||||
__m128i layer3_chunk0 = _mm_packus_epi16(_mm_and_si128(layer4_chunk0, v_mask), _mm_and_si128(layer4_chunk1, v_mask));
|
||||
__m128i layer3_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk0, 8), _mm_srli_epi16(layer4_chunk1, 8));
|
||||
__m128i layer3_chunk1 = _mm_packus_epi16(_mm_and_si128(layer4_chunk2, v_mask), _mm_and_si128(layer4_chunk3, v_mask));
|
||||
__m128i layer3_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk2, 8), _mm_srli_epi16(layer4_chunk3, 8));
|
||||
__m128i layer3_chunk2 = _mm_packus_epi16(_mm_and_si128(layer4_chunk4, v_mask), _mm_and_si128(layer4_chunk5, v_mask));
|
||||
__m128i layer3_chunk6 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk4, 8), _mm_srli_epi16(layer4_chunk5, 8));
|
||||
__m128i layer3_chunk3 = _mm_packus_epi16(_mm_and_si128(layer4_chunk6, v_mask), _mm_and_si128(layer4_chunk7, v_mask));
|
||||
__m128i layer3_chunk7 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk6, 8), _mm_srli_epi16(layer4_chunk7, 8));
|
||||
|
||||
__m128i layer2_chunk0 = _mm_packus_epi16(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask));
|
||||
__m128i layer2_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk0, 8), _mm_srli_epi16(layer3_chunk1, 8));
|
||||
__m128i layer2_chunk1 = _mm_packus_epi16(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask));
|
||||
__m128i layer2_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk2, 8), _mm_srli_epi16(layer3_chunk3, 8));
|
||||
__m128i layer2_chunk2 = _mm_packus_epi16(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask));
|
||||
__m128i layer2_chunk6 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk4, 8), _mm_srli_epi16(layer3_chunk5, 8));
|
||||
__m128i layer2_chunk3 = _mm_packus_epi16(_mm_and_si128(layer3_chunk6, v_mask), _mm_and_si128(layer3_chunk7, v_mask));
|
||||
__m128i layer2_chunk7 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk6, 8), _mm_srli_epi16(layer3_chunk7, 8));
|
||||
|
||||
__m128i layer1_chunk0 = _mm_packus_epi16(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask));
|
||||
__m128i layer1_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk0, 8), _mm_srli_epi16(layer2_chunk1, 8));
|
||||
__m128i layer1_chunk1 = _mm_packus_epi16(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask));
|
||||
__m128i layer1_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk2, 8), _mm_srli_epi16(layer2_chunk3, 8));
|
||||
__m128i layer1_chunk2 = _mm_packus_epi16(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask));
|
||||
__m128i layer1_chunk6 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk4, 8), _mm_srli_epi16(layer2_chunk5, 8));
|
||||
__m128i layer1_chunk3 = _mm_packus_epi16(_mm_and_si128(layer2_chunk6, v_mask), _mm_and_si128(layer2_chunk7, v_mask));
|
||||
__m128i layer1_chunk7 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk6, 8), _mm_srli_epi16(layer2_chunk7, 8));
|
||||
|
||||
v_r0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask));
|
||||
v_b0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk0, 8), _mm_srli_epi16(layer1_chunk1, 8));
|
||||
v_r1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask));
|
||||
v_b1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk2, 8), _mm_srli_epi16(layer1_chunk3, 8));
|
||||
v_g0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask));
|
||||
v_a0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk4, 8), _mm_srli_epi16(layer1_chunk5, 8));
|
||||
v_g1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk6, v_mask), _mm_and_si128(layer1_chunk7, v_mask));
|
||||
v_a1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk6, 8), _mm_srli_epi16(layer1_chunk7, 8));
|
||||
}
|
||||
|
||||
inline void _mm_deinterleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1)
|
||||
{
|
||||
__m128i layer1_chunk0 = _mm_unpacklo_epi16(v_r0, v_g0);
|
||||
__m128i layer1_chunk1 = _mm_unpackhi_epi16(v_r0, v_g0);
|
||||
__m128i layer1_chunk2 = _mm_unpacklo_epi16(v_r1, v_g1);
|
||||
__m128i layer1_chunk3 = _mm_unpackhi_epi16(v_r1, v_g1);
|
||||
|
||||
__m128i layer2_chunk0 = _mm_unpacklo_epi16(layer1_chunk0, layer1_chunk2);
|
||||
__m128i layer2_chunk1 = _mm_unpackhi_epi16(layer1_chunk0, layer1_chunk2);
|
||||
__m128i layer2_chunk2 = _mm_unpacklo_epi16(layer1_chunk1, layer1_chunk3);
|
||||
__m128i layer2_chunk3 = _mm_unpackhi_epi16(layer1_chunk1, layer1_chunk3);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_unpacklo_epi16(layer2_chunk0, layer2_chunk2);
|
||||
__m128i layer3_chunk1 = _mm_unpackhi_epi16(layer2_chunk0, layer2_chunk2);
|
||||
__m128i layer3_chunk2 = _mm_unpacklo_epi16(layer2_chunk1, layer2_chunk3);
|
||||
__m128i layer3_chunk3 = _mm_unpackhi_epi16(layer2_chunk1, layer2_chunk3);
|
||||
|
||||
v_r0 = _mm_unpacklo_epi16(layer3_chunk0, layer3_chunk2);
|
||||
v_r1 = _mm_unpackhi_epi16(layer3_chunk0, layer3_chunk2);
|
||||
v_g0 = _mm_unpacklo_epi16(layer3_chunk1, layer3_chunk3);
|
||||
v_g1 = _mm_unpackhi_epi16(layer3_chunk1, layer3_chunk3);
|
||||
}
|
||||
|
||||
inline void _mm_deinterleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0,
|
||||
__m128i & v_g1, __m128i & v_b0, __m128i & v_b1)
|
||||
{
|
||||
__m128i layer1_chunk0 = _mm_unpacklo_epi16(v_r0, v_g1);
|
||||
__m128i layer1_chunk1 = _mm_unpackhi_epi16(v_r0, v_g1);
|
||||
__m128i layer1_chunk2 = _mm_unpacklo_epi16(v_r1, v_b0);
|
||||
__m128i layer1_chunk3 = _mm_unpackhi_epi16(v_r1, v_b0);
|
||||
__m128i layer1_chunk4 = _mm_unpacklo_epi16(v_g0, v_b1);
|
||||
__m128i layer1_chunk5 = _mm_unpackhi_epi16(v_g0, v_b1);
|
||||
|
||||
__m128i layer2_chunk0 = _mm_unpacklo_epi16(layer1_chunk0, layer1_chunk3);
|
||||
__m128i layer2_chunk1 = _mm_unpackhi_epi16(layer1_chunk0, layer1_chunk3);
|
||||
__m128i layer2_chunk2 = _mm_unpacklo_epi16(layer1_chunk1, layer1_chunk4);
|
||||
__m128i layer2_chunk3 = _mm_unpackhi_epi16(layer1_chunk1, layer1_chunk4);
|
||||
__m128i layer2_chunk4 = _mm_unpacklo_epi16(layer1_chunk2, layer1_chunk5);
|
||||
__m128i layer2_chunk5 = _mm_unpackhi_epi16(layer1_chunk2, layer1_chunk5);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_unpacklo_epi16(layer2_chunk0, layer2_chunk3);
|
||||
__m128i layer3_chunk1 = _mm_unpackhi_epi16(layer2_chunk0, layer2_chunk3);
|
||||
__m128i layer3_chunk2 = _mm_unpacklo_epi16(layer2_chunk1, layer2_chunk4);
|
||||
__m128i layer3_chunk3 = _mm_unpackhi_epi16(layer2_chunk1, layer2_chunk4);
|
||||
__m128i layer3_chunk4 = _mm_unpacklo_epi16(layer2_chunk2, layer2_chunk5);
|
||||
__m128i layer3_chunk5 = _mm_unpackhi_epi16(layer2_chunk2, layer2_chunk5);
|
||||
|
||||
v_r0 = _mm_unpacklo_epi16(layer3_chunk0, layer3_chunk3);
|
||||
v_r1 = _mm_unpackhi_epi16(layer3_chunk0, layer3_chunk3);
|
||||
v_g0 = _mm_unpacklo_epi16(layer3_chunk1, layer3_chunk4);
|
||||
v_g1 = _mm_unpackhi_epi16(layer3_chunk1, layer3_chunk4);
|
||||
v_b0 = _mm_unpacklo_epi16(layer3_chunk2, layer3_chunk5);
|
||||
v_b1 = _mm_unpackhi_epi16(layer3_chunk2, layer3_chunk5);
|
||||
}
|
||||
|
||||
inline void _mm_deinterleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1,
|
||||
__m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1)
|
||||
{
|
||||
__m128i layer1_chunk0 = _mm_unpacklo_epi16(v_r0, v_b0);
|
||||
__m128i layer1_chunk1 = _mm_unpackhi_epi16(v_r0, v_b0);
|
||||
__m128i layer1_chunk2 = _mm_unpacklo_epi16(v_r1, v_b1);
|
||||
__m128i layer1_chunk3 = _mm_unpackhi_epi16(v_r1, v_b1);
|
||||
__m128i layer1_chunk4 = _mm_unpacklo_epi16(v_g0, v_a0);
|
||||
__m128i layer1_chunk5 = _mm_unpackhi_epi16(v_g0, v_a0);
|
||||
__m128i layer1_chunk6 = _mm_unpacklo_epi16(v_g1, v_a1);
|
||||
__m128i layer1_chunk7 = _mm_unpackhi_epi16(v_g1, v_a1);
|
||||
|
||||
__m128i layer2_chunk0 = _mm_unpacklo_epi16(layer1_chunk0, layer1_chunk4);
|
||||
__m128i layer2_chunk1 = _mm_unpackhi_epi16(layer1_chunk0, layer1_chunk4);
|
||||
__m128i layer2_chunk2 = _mm_unpacklo_epi16(layer1_chunk1, layer1_chunk5);
|
||||
__m128i layer2_chunk3 = _mm_unpackhi_epi16(layer1_chunk1, layer1_chunk5);
|
||||
__m128i layer2_chunk4 = _mm_unpacklo_epi16(layer1_chunk2, layer1_chunk6);
|
||||
__m128i layer2_chunk5 = _mm_unpackhi_epi16(layer1_chunk2, layer1_chunk6);
|
||||
__m128i layer2_chunk6 = _mm_unpacklo_epi16(layer1_chunk3, layer1_chunk7);
|
||||
__m128i layer2_chunk7 = _mm_unpackhi_epi16(layer1_chunk3, layer1_chunk7);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_unpacklo_epi16(layer2_chunk0, layer2_chunk4);
|
||||
__m128i layer3_chunk1 = _mm_unpackhi_epi16(layer2_chunk0, layer2_chunk4);
|
||||
__m128i layer3_chunk2 = _mm_unpacklo_epi16(layer2_chunk1, layer2_chunk5);
|
||||
__m128i layer3_chunk3 = _mm_unpackhi_epi16(layer2_chunk1, layer2_chunk5);
|
||||
__m128i layer3_chunk4 = _mm_unpacklo_epi16(layer2_chunk2, layer2_chunk6);
|
||||
__m128i layer3_chunk5 = _mm_unpackhi_epi16(layer2_chunk2, layer2_chunk6);
|
||||
__m128i layer3_chunk6 = _mm_unpacklo_epi16(layer2_chunk3, layer2_chunk7);
|
||||
__m128i layer3_chunk7 = _mm_unpackhi_epi16(layer2_chunk3, layer2_chunk7);
|
||||
|
||||
v_r0 = _mm_unpacklo_epi16(layer3_chunk0, layer3_chunk4);
|
||||
v_r1 = _mm_unpackhi_epi16(layer3_chunk0, layer3_chunk4);
|
||||
v_g0 = _mm_unpacklo_epi16(layer3_chunk1, layer3_chunk5);
|
||||
v_g1 = _mm_unpackhi_epi16(layer3_chunk1, layer3_chunk5);
|
||||
v_b0 = _mm_unpacklo_epi16(layer3_chunk2, layer3_chunk6);
|
||||
v_b1 = _mm_unpackhi_epi16(layer3_chunk2, layer3_chunk6);
|
||||
v_a0 = _mm_unpacklo_epi16(layer3_chunk3, layer3_chunk7);
|
||||
v_a1 = _mm_unpackhi_epi16(layer3_chunk3, layer3_chunk7);
|
||||
}
|
||||
|
||||
#if CV_SSE4_1
|
||||
|
||||
inline void _mm_interleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1)
|
||||
{
|
||||
__m128i v_mask = _mm_set1_epi32(0x0000ffff);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_packus_epi32(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask));
|
||||
__m128i layer3_chunk2 = _mm_packus_epi32(_mm_srli_epi32(v_r0, 16), _mm_srli_epi32(v_r1, 16));
|
||||
__m128i layer3_chunk1 = _mm_packus_epi32(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask));
|
||||
__m128i layer3_chunk3 = _mm_packus_epi32(_mm_srli_epi32(v_g0, 16), _mm_srli_epi32(v_g1, 16));
|
||||
|
||||
__m128i layer2_chunk0 = _mm_packus_epi32(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask));
|
||||
__m128i layer2_chunk2 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk0, 16), _mm_srli_epi32(layer3_chunk1, 16));
|
||||
__m128i layer2_chunk1 = _mm_packus_epi32(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask));
|
||||
__m128i layer2_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk2, 16), _mm_srli_epi32(layer3_chunk3, 16));
|
||||
|
||||
__m128i layer1_chunk0 = _mm_packus_epi32(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask));
|
||||
__m128i layer1_chunk2 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk0, 16), _mm_srli_epi32(layer2_chunk1, 16));
|
||||
__m128i layer1_chunk1 = _mm_packus_epi32(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask));
|
||||
__m128i layer1_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk2, 16), _mm_srli_epi32(layer2_chunk3, 16));
|
||||
|
||||
v_r0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask));
|
||||
v_g0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk0, 16), _mm_srli_epi32(layer1_chunk1, 16));
|
||||
v_r1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask));
|
||||
v_g1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk2, 16), _mm_srli_epi32(layer1_chunk3, 16));
|
||||
}
|
||||
|
||||
inline void _mm_interleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0,
|
||||
__m128i & v_g1, __m128i & v_b0, __m128i & v_b1)
|
||||
{
|
||||
__m128i v_mask = _mm_set1_epi32(0x0000ffff);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_packus_epi32(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask));
|
||||
__m128i layer3_chunk3 = _mm_packus_epi32(_mm_srli_epi32(v_r0, 16), _mm_srli_epi32(v_r1, 16));
|
||||
__m128i layer3_chunk1 = _mm_packus_epi32(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask));
|
||||
__m128i layer3_chunk4 = _mm_packus_epi32(_mm_srli_epi32(v_g0, 16), _mm_srli_epi32(v_g1, 16));
|
||||
__m128i layer3_chunk2 = _mm_packus_epi32(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask));
|
||||
__m128i layer3_chunk5 = _mm_packus_epi32(_mm_srli_epi32(v_b0, 16), _mm_srli_epi32(v_b1, 16));
|
||||
|
||||
__m128i layer2_chunk0 = _mm_packus_epi32(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask));
|
||||
__m128i layer2_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk0, 16), _mm_srli_epi32(layer3_chunk1, 16));
|
||||
__m128i layer2_chunk1 = _mm_packus_epi32(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask));
|
||||
__m128i layer2_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk2, 16), _mm_srli_epi32(layer3_chunk3, 16));
|
||||
__m128i layer2_chunk2 = _mm_packus_epi32(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask));
|
||||
__m128i layer2_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk4, 16), _mm_srli_epi32(layer3_chunk5, 16));
|
||||
|
||||
__m128i layer1_chunk0 = _mm_packus_epi32(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask));
|
||||
__m128i layer1_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk0, 16), _mm_srli_epi32(layer2_chunk1, 16));
|
||||
__m128i layer1_chunk1 = _mm_packus_epi32(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask));
|
||||
__m128i layer1_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk2, 16), _mm_srli_epi32(layer2_chunk3, 16));
|
||||
__m128i layer1_chunk2 = _mm_packus_epi32(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask));
|
||||
__m128i layer1_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk4, 16), _mm_srli_epi32(layer2_chunk5, 16));
|
||||
|
||||
v_r0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask));
|
||||
v_g1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk0, 16), _mm_srli_epi32(layer1_chunk1, 16));
|
||||
v_r1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask));
|
||||
v_b0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk2, 16), _mm_srli_epi32(layer1_chunk3, 16));
|
||||
v_g0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask));
|
||||
v_b1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk4, 16), _mm_srli_epi32(layer1_chunk5, 16));
|
||||
}
|
||||
|
||||
inline void _mm_interleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1,
|
||||
__m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1)
|
||||
{
|
||||
__m128i v_mask = _mm_set1_epi32(0x0000ffff);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_packus_epi32(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask));
|
||||
__m128i layer3_chunk4 = _mm_packus_epi32(_mm_srli_epi32(v_r0, 16), _mm_srli_epi32(v_r1, 16));
|
||||
__m128i layer3_chunk1 = _mm_packus_epi32(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask));
|
||||
__m128i layer3_chunk5 = _mm_packus_epi32(_mm_srli_epi32(v_g0, 16), _mm_srli_epi32(v_g1, 16));
|
||||
__m128i layer3_chunk2 = _mm_packus_epi32(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask));
|
||||
__m128i layer3_chunk6 = _mm_packus_epi32(_mm_srli_epi32(v_b0, 16), _mm_srli_epi32(v_b1, 16));
|
||||
__m128i layer3_chunk3 = _mm_packus_epi32(_mm_and_si128(v_a0, v_mask), _mm_and_si128(v_a1, v_mask));
|
||||
__m128i layer3_chunk7 = _mm_packus_epi32(_mm_srli_epi32(v_a0, 16), _mm_srli_epi32(v_a1, 16));
|
||||
|
||||
__m128i layer2_chunk0 = _mm_packus_epi32(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask));
|
||||
__m128i layer2_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk0, 16), _mm_srli_epi32(layer3_chunk1, 16));
|
||||
__m128i layer2_chunk1 = _mm_packus_epi32(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask));
|
||||
__m128i layer2_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk2, 16), _mm_srli_epi32(layer3_chunk3, 16));
|
||||
__m128i layer2_chunk2 = _mm_packus_epi32(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask));
|
||||
__m128i layer2_chunk6 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk4, 16), _mm_srli_epi32(layer3_chunk5, 16));
|
||||
__m128i layer2_chunk3 = _mm_packus_epi32(_mm_and_si128(layer3_chunk6, v_mask), _mm_and_si128(layer3_chunk7, v_mask));
|
||||
__m128i layer2_chunk7 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk6, 16), _mm_srli_epi32(layer3_chunk7, 16));
|
||||
|
||||
__m128i layer1_chunk0 = _mm_packus_epi32(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask));
|
||||
__m128i layer1_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk0, 16), _mm_srli_epi32(layer2_chunk1, 16));
|
||||
__m128i layer1_chunk1 = _mm_packus_epi32(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask));
|
||||
__m128i layer1_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk2, 16), _mm_srli_epi32(layer2_chunk3, 16));
|
||||
__m128i layer1_chunk2 = _mm_packus_epi32(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask));
|
||||
__m128i layer1_chunk6 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk4, 16), _mm_srli_epi32(layer2_chunk5, 16));
|
||||
__m128i layer1_chunk3 = _mm_packus_epi32(_mm_and_si128(layer2_chunk6, v_mask), _mm_and_si128(layer2_chunk7, v_mask));
|
||||
__m128i layer1_chunk7 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk6, 16), _mm_srli_epi32(layer2_chunk7, 16));
|
||||
|
||||
v_r0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask));
|
||||
v_b0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk0, 16), _mm_srli_epi32(layer1_chunk1, 16));
|
||||
v_r1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask));
|
||||
v_b1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk2, 16), _mm_srli_epi32(layer1_chunk3, 16));
|
||||
v_g0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask));
|
||||
v_a0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk4, 16), _mm_srli_epi32(layer1_chunk5, 16));
|
||||
v_g1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk6, v_mask), _mm_and_si128(layer1_chunk7, v_mask));
|
||||
v_a1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk6, 16), _mm_srli_epi32(layer1_chunk7, 16));
|
||||
}
|
||||
|
||||
#endif // CV_SSE4_1
|
||||
|
||||
inline void _mm_deinterleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1)
|
||||
{
|
||||
__m128 layer1_chunk0 = _mm_unpacklo_ps(v_r0, v_g0);
|
||||
__m128 layer1_chunk1 = _mm_unpackhi_ps(v_r0, v_g0);
|
||||
__m128 layer1_chunk2 = _mm_unpacklo_ps(v_r1, v_g1);
|
||||
__m128 layer1_chunk3 = _mm_unpackhi_ps(v_r1, v_g1);
|
||||
|
||||
__m128 layer2_chunk0 = _mm_unpacklo_ps(layer1_chunk0, layer1_chunk2);
|
||||
__m128 layer2_chunk1 = _mm_unpackhi_ps(layer1_chunk0, layer1_chunk2);
|
||||
__m128 layer2_chunk2 = _mm_unpacklo_ps(layer1_chunk1, layer1_chunk3);
|
||||
__m128 layer2_chunk3 = _mm_unpackhi_ps(layer1_chunk1, layer1_chunk3);
|
||||
|
||||
v_r0 = _mm_unpacklo_ps(layer2_chunk0, layer2_chunk2);
|
||||
v_r1 = _mm_unpackhi_ps(layer2_chunk0, layer2_chunk2);
|
||||
v_g0 = _mm_unpacklo_ps(layer2_chunk1, layer2_chunk3);
|
||||
v_g1 = _mm_unpackhi_ps(layer2_chunk1, layer2_chunk3);
|
||||
}
|
||||
|
||||
inline void _mm_deinterleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0,
|
||||
__m128 & v_g1, __m128 & v_b0, __m128 & v_b1)
|
||||
{
|
||||
__m128 layer1_chunk0 = _mm_unpacklo_ps(v_r0, v_g1);
|
||||
__m128 layer1_chunk1 = _mm_unpackhi_ps(v_r0, v_g1);
|
||||
__m128 layer1_chunk2 = _mm_unpacklo_ps(v_r1, v_b0);
|
||||
__m128 layer1_chunk3 = _mm_unpackhi_ps(v_r1, v_b0);
|
||||
__m128 layer1_chunk4 = _mm_unpacklo_ps(v_g0, v_b1);
|
||||
__m128 layer1_chunk5 = _mm_unpackhi_ps(v_g0, v_b1);
|
||||
|
||||
__m128 layer2_chunk0 = _mm_unpacklo_ps(layer1_chunk0, layer1_chunk3);
|
||||
__m128 layer2_chunk1 = _mm_unpackhi_ps(layer1_chunk0, layer1_chunk3);
|
||||
__m128 layer2_chunk2 = _mm_unpacklo_ps(layer1_chunk1, layer1_chunk4);
|
||||
__m128 layer2_chunk3 = _mm_unpackhi_ps(layer1_chunk1, layer1_chunk4);
|
||||
__m128 layer2_chunk4 = _mm_unpacklo_ps(layer1_chunk2, layer1_chunk5);
|
||||
__m128 layer2_chunk5 = _mm_unpackhi_ps(layer1_chunk2, layer1_chunk5);
|
||||
|
||||
v_r0 = _mm_unpacklo_ps(layer2_chunk0, layer2_chunk3);
|
||||
v_r1 = _mm_unpackhi_ps(layer2_chunk0, layer2_chunk3);
|
||||
v_g0 = _mm_unpacklo_ps(layer2_chunk1, layer2_chunk4);
|
||||
v_g1 = _mm_unpackhi_ps(layer2_chunk1, layer2_chunk4);
|
||||
v_b0 = _mm_unpacklo_ps(layer2_chunk2, layer2_chunk5);
|
||||
v_b1 = _mm_unpackhi_ps(layer2_chunk2, layer2_chunk5);
|
||||
}
|
||||
|
||||
inline void _mm_deinterleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1,
|
||||
__m128 & v_b0, __m128 & v_b1, __m128 & v_a0, __m128 & v_a1)
|
||||
{
|
||||
__m128 layer1_chunk0 = _mm_unpacklo_ps(v_r0, v_b0);
|
||||
__m128 layer1_chunk1 = _mm_unpackhi_ps(v_r0, v_b0);
|
||||
__m128 layer1_chunk2 = _mm_unpacklo_ps(v_r1, v_b1);
|
||||
__m128 layer1_chunk3 = _mm_unpackhi_ps(v_r1, v_b1);
|
||||
__m128 layer1_chunk4 = _mm_unpacklo_ps(v_g0, v_a0);
|
||||
__m128 layer1_chunk5 = _mm_unpackhi_ps(v_g0, v_a0);
|
||||
__m128 layer1_chunk6 = _mm_unpacklo_ps(v_g1, v_a1);
|
||||
__m128 layer1_chunk7 = _mm_unpackhi_ps(v_g1, v_a1);
|
||||
|
||||
__m128 layer2_chunk0 = _mm_unpacklo_ps(layer1_chunk0, layer1_chunk4);
|
||||
__m128 layer2_chunk1 = _mm_unpackhi_ps(layer1_chunk0, layer1_chunk4);
|
||||
__m128 layer2_chunk2 = _mm_unpacklo_ps(layer1_chunk1, layer1_chunk5);
|
||||
__m128 layer2_chunk3 = _mm_unpackhi_ps(layer1_chunk1, layer1_chunk5);
|
||||
__m128 layer2_chunk4 = _mm_unpacklo_ps(layer1_chunk2, layer1_chunk6);
|
||||
__m128 layer2_chunk5 = _mm_unpackhi_ps(layer1_chunk2, layer1_chunk6);
|
||||
__m128 layer2_chunk6 = _mm_unpacklo_ps(layer1_chunk3, layer1_chunk7);
|
||||
__m128 layer2_chunk7 = _mm_unpackhi_ps(layer1_chunk3, layer1_chunk7);
|
||||
|
||||
v_r0 = _mm_unpacklo_ps(layer2_chunk0, layer2_chunk4);
|
||||
v_r1 = _mm_unpackhi_ps(layer2_chunk0, layer2_chunk4);
|
||||
v_g0 = _mm_unpacklo_ps(layer2_chunk1, layer2_chunk5);
|
||||
v_g1 = _mm_unpackhi_ps(layer2_chunk1, layer2_chunk5);
|
||||
v_b0 = _mm_unpacklo_ps(layer2_chunk2, layer2_chunk6);
|
||||
v_b1 = _mm_unpackhi_ps(layer2_chunk2, layer2_chunk6);
|
||||
v_a0 = _mm_unpacklo_ps(layer2_chunk3, layer2_chunk7);
|
||||
v_a1 = _mm_unpackhi_ps(layer2_chunk3, layer2_chunk7);
|
||||
}
|
||||
|
||||
inline void _mm_interleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1)
|
||||
{
|
||||
const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1);
|
||||
|
||||
__m128 layer2_chunk0 = _mm_shuffle_ps(v_r0, v_r1, mask_lo);
|
||||
__m128 layer2_chunk2 = _mm_shuffle_ps(v_r0, v_r1, mask_hi);
|
||||
__m128 layer2_chunk1 = _mm_shuffle_ps(v_g0, v_g1, mask_lo);
|
||||
__m128 layer2_chunk3 = _mm_shuffle_ps(v_g0, v_g1, mask_hi);
|
||||
|
||||
__m128 layer1_chunk0 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_lo);
|
||||
__m128 layer1_chunk2 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_hi);
|
||||
__m128 layer1_chunk1 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_lo);
|
||||
__m128 layer1_chunk3 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_hi);
|
||||
|
||||
v_r0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_lo);
|
||||
v_g0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_hi);
|
||||
v_r1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_lo);
|
||||
v_g1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_hi);
|
||||
}
|
||||
|
||||
inline void _mm_interleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0,
|
||||
__m128 & v_g1, __m128 & v_b0, __m128 & v_b1)
|
||||
{
|
||||
const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1);
|
||||
|
||||
__m128 layer2_chunk0 = _mm_shuffle_ps(v_r0, v_r1, mask_lo);
|
||||
__m128 layer2_chunk3 = _mm_shuffle_ps(v_r0, v_r1, mask_hi);
|
||||
__m128 layer2_chunk1 = _mm_shuffle_ps(v_g0, v_g1, mask_lo);
|
||||
__m128 layer2_chunk4 = _mm_shuffle_ps(v_g0, v_g1, mask_hi);
|
||||
__m128 layer2_chunk2 = _mm_shuffle_ps(v_b0, v_b1, mask_lo);
|
||||
__m128 layer2_chunk5 = _mm_shuffle_ps(v_b0, v_b1, mask_hi);
|
||||
|
||||
__m128 layer1_chunk0 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_lo);
|
||||
__m128 layer1_chunk3 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_hi);
|
||||
__m128 layer1_chunk1 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_lo);
|
||||
__m128 layer1_chunk4 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_hi);
|
||||
__m128 layer1_chunk2 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_lo);
|
||||
__m128 layer1_chunk5 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_hi);
|
||||
|
||||
v_r0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_lo);
|
||||
v_g1 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_hi);
|
||||
v_r1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_lo);
|
||||
v_b0 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_hi);
|
||||
v_g0 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_lo);
|
||||
v_b1 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_hi);
|
||||
}
|
||||
|
||||
inline void _mm_interleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1,
|
||||
__m128 & v_b0, __m128 & v_b1, __m128 & v_a0, __m128 & v_a1)
|
||||
{
|
||||
const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1);
|
||||
|
||||
__m128 layer2_chunk0 = _mm_shuffle_ps(v_r0, v_r1, mask_lo);
|
||||
__m128 layer2_chunk4 = _mm_shuffle_ps(v_r0, v_r1, mask_hi);
|
||||
__m128 layer2_chunk1 = _mm_shuffle_ps(v_g0, v_g1, mask_lo);
|
||||
__m128 layer2_chunk5 = _mm_shuffle_ps(v_g0, v_g1, mask_hi);
|
||||
__m128 layer2_chunk2 = _mm_shuffle_ps(v_b0, v_b1, mask_lo);
|
||||
__m128 layer2_chunk6 = _mm_shuffle_ps(v_b0, v_b1, mask_hi);
|
||||
__m128 layer2_chunk3 = _mm_shuffle_ps(v_a0, v_a1, mask_lo);
|
||||
__m128 layer2_chunk7 = _mm_shuffle_ps(v_a0, v_a1, mask_hi);
|
||||
|
||||
__m128 layer1_chunk0 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_lo);
|
||||
__m128 layer1_chunk4 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_hi);
|
||||
__m128 layer1_chunk1 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_lo);
|
||||
__m128 layer1_chunk5 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_hi);
|
||||
__m128 layer1_chunk2 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_lo);
|
||||
__m128 layer1_chunk6 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_hi);
|
||||
__m128 layer1_chunk3 = _mm_shuffle_ps(layer2_chunk6, layer2_chunk7, mask_lo);
|
||||
__m128 layer1_chunk7 = _mm_shuffle_ps(layer2_chunk6, layer2_chunk7, mask_hi);
|
||||
|
||||
v_r0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_lo);
|
||||
v_b0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_hi);
|
||||
v_r1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_lo);
|
||||
v_b1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_hi);
|
||||
v_g0 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_lo);
|
||||
v_a0 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_hi);
|
||||
v_g1 = _mm_shuffle_ps(layer1_chunk6, layer1_chunk7, mask_lo);
|
||||
v_a1 = _mm_shuffle_ps(layer1_chunk6, layer1_chunk7, mask_hi);
|
||||
}
|
||||
|
||||
#endif // CV_SSE2
|
||||
|
||||
#endif //__OPENCV_CORE_SSE_UTILS_HPP__
|
@@ -277,37 +277,6 @@ execution time.
|
||||
*/
|
||||
CV_EXPORTS_W int64 getCPUTickCount();
|
||||
|
||||
/** @brief Available CPU features.
|
||||
|
||||
remember to keep this list identical to the one in cvdef.h
|
||||
*/
|
||||
enum CpuFeatures {
|
||||
CPU_MMX = 1,
|
||||
CPU_SSE = 2,
|
||||
CPU_SSE2 = 3,
|
||||
CPU_SSE3 = 4,
|
||||
CPU_SSSE3 = 5,
|
||||
CPU_SSE4_1 = 6,
|
||||
CPU_SSE4_2 = 7,
|
||||
CPU_POPCNT = 8,
|
||||
|
||||
CPU_AVX = 10,
|
||||
CPU_AVX2 = 11,
|
||||
CPU_FMA3 = 12,
|
||||
|
||||
CPU_AVX_512F = 13,
|
||||
CPU_AVX_512BW = 14,
|
||||
CPU_AVX_512CD = 15,
|
||||
CPU_AVX_512DQ = 16,
|
||||
CPU_AVX_512ER = 17,
|
||||
CPU_AVX_512IFMA512 = 18,
|
||||
CPU_AVX_512PF = 19,
|
||||
CPU_AVX_512VBMI = 20,
|
||||
CPU_AVX_512VL = 21,
|
||||
|
||||
CPU_NEON = 100
|
||||
};
|
||||
|
||||
/** @brief Returns true if the specified feature is supported by the host hardware.
|
||||
|
||||
The function returns true if the host hardware supports the specified feature. When user calls
|
||||
|
File diff suppressed because it is too large
Load Diff
@@ -42,6 +42,7 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#include "opencl_kernels_core.hpp"
|
||||
|
||||
#ifdef __APPLE__
|
||||
@@ -49,776 +50,37 @@
|
||||
#define CV_NEON 0
|
||||
#endif
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
/****************************************************************************************\
|
||||
* split & merge *
|
||||
\****************************************************************************************/
|
||||
|
||||
#if CV_NEON
|
||||
template<typename T> struct VSplit2;
|
||||
template<typename T> struct VSplit3;
|
||||
template<typename T> struct VSplit4;
|
||||
|
||||
#define SPLIT2_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
|
||||
template<> \
|
||||
struct name<data_type> \
|
||||
{ \
|
||||
void operator()(const data_type* src, data_type* dst0, \
|
||||
data_type* dst1) const \
|
||||
{ \
|
||||
reg_type r = load_func(src); \
|
||||
store_func(dst0, r.val[0]); \
|
||||
store_func(dst1, r.val[1]); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define SPLIT3_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
|
||||
template<> \
|
||||
struct name<data_type> \
|
||||
{ \
|
||||
void operator()(const data_type* src, data_type* dst0, data_type* dst1, \
|
||||
data_type* dst2) const \
|
||||
{ \
|
||||
reg_type r = load_func(src); \
|
||||
store_func(dst0, r.val[0]); \
|
||||
store_func(dst1, r.val[1]); \
|
||||
store_func(dst2, r.val[2]); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define SPLIT4_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
|
||||
template<> \
|
||||
struct name<data_type> \
|
||||
{ \
|
||||
void operator()(const data_type* src, data_type* dst0, data_type* dst1, \
|
||||
data_type* dst2, data_type* dst3) const \
|
||||
{ \
|
||||
reg_type r = load_func(src); \
|
||||
store_func(dst0, r.val[0]); \
|
||||
store_func(dst1, r.val[1]); \
|
||||
store_func(dst2, r.val[2]); \
|
||||
store_func(dst3, r.val[3]); \
|
||||
} \
|
||||
}
|
||||
|
||||
SPLIT2_KERNEL_TEMPLATE(VSplit2, uchar , uint8x16x2_t, vld2q_u8 , vst1q_u8 );
|
||||
SPLIT2_KERNEL_TEMPLATE(VSplit2, ushort, uint16x8x2_t, vld2q_u16, vst1q_u16);
|
||||
SPLIT2_KERNEL_TEMPLATE(VSplit2, int , int32x4x2_t, vld2q_s32, vst1q_s32);
|
||||
SPLIT2_KERNEL_TEMPLATE(VSplit2, int64 , int64x1x2_t, vld2_s64 , vst1_s64 );
|
||||
|
||||
SPLIT3_KERNEL_TEMPLATE(VSplit3, uchar , uint8x16x3_t, vld3q_u8 , vst1q_u8 );
|
||||
SPLIT3_KERNEL_TEMPLATE(VSplit3, ushort, uint16x8x3_t, vld3q_u16, vst1q_u16);
|
||||
SPLIT3_KERNEL_TEMPLATE(VSplit3, int , int32x4x3_t, vld3q_s32, vst1q_s32);
|
||||
SPLIT3_KERNEL_TEMPLATE(VSplit3, int64 , int64x1x3_t, vld3_s64 , vst1_s64 );
|
||||
|
||||
SPLIT4_KERNEL_TEMPLATE(VSplit4, uchar , uint8x16x4_t, vld4q_u8 , vst1q_u8 );
|
||||
SPLIT4_KERNEL_TEMPLATE(VSplit4, ushort, uint16x8x4_t, vld4q_u16, vst1q_u16);
|
||||
SPLIT4_KERNEL_TEMPLATE(VSplit4, int , int32x4x4_t, vld4q_s32, vst1q_s32);
|
||||
SPLIT4_KERNEL_TEMPLATE(VSplit4, int64 , int64x1x4_t, vld4_s64 , vst1_s64 );
|
||||
|
||||
#elif CV_SSE2
|
||||
|
||||
template <typename T>
|
||||
struct VSplit2
|
||||
{
|
||||
VSplit2() : support(false) { }
|
||||
void operator()(const T *, T *, T *) const { }
|
||||
|
||||
bool support;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct VSplit3
|
||||
{
|
||||
VSplit3() : support(false) { }
|
||||
void operator()(const T *, T *, T *, T *) const { }
|
||||
|
||||
bool support;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct VSplit4
|
||||
{
|
||||
VSplit4() : support(false) { }
|
||||
void operator()(const T *, T *, T *, T *, T *) const { }
|
||||
|
||||
bool support;
|
||||
};
|
||||
|
||||
#define SPLIT2_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \
|
||||
template <> \
|
||||
struct VSplit2<data_type> \
|
||||
{ \
|
||||
enum \
|
||||
{ \
|
||||
ELEMS_IN_VEC = 16 / sizeof(data_type) \
|
||||
}; \
|
||||
\
|
||||
VSplit2() \
|
||||
{ \
|
||||
support = checkHardwareSupport(CV_CPU_SSE2); \
|
||||
} \
|
||||
\
|
||||
void operator()(const data_type * src, \
|
||||
data_type * dst0, data_type * dst1) const \
|
||||
{ \
|
||||
reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \
|
||||
reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \
|
||||
reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \
|
||||
reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \
|
||||
\
|
||||
_mm_deinterleave(v_src0, v_src1, v_src2, v_src3); \
|
||||
\
|
||||
_mm_storeu_##flavor((cast_type *)(dst0), v_src0); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst1), v_src2); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \
|
||||
} \
|
||||
\
|
||||
bool support; \
|
||||
}
|
||||
|
||||
#define SPLIT3_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \
|
||||
template <> \
|
||||
struct VSplit3<data_type> \
|
||||
{ \
|
||||
enum \
|
||||
{ \
|
||||
ELEMS_IN_VEC = 16 / sizeof(data_type) \
|
||||
}; \
|
||||
\
|
||||
VSplit3() \
|
||||
{ \
|
||||
support = checkHardwareSupport(CV_CPU_SSE2); \
|
||||
} \
|
||||
\
|
||||
void operator()(const data_type * src, \
|
||||
data_type * dst0, data_type * dst1, data_type * dst2) const \
|
||||
{ \
|
||||
reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \
|
||||
reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \
|
||||
reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \
|
||||
reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \
|
||||
reg_type v_src4 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 4)); \
|
||||
reg_type v_src5 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 5)); \
|
||||
\
|
||||
_mm_deinterleave(v_src0, v_src1, v_src2, \
|
||||
v_src3, v_src4, v_src5); \
|
||||
\
|
||||
_mm_storeu_##flavor((cast_type *)(dst0), v_src0); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst1), v_src2); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst2), v_src4); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst2 + ELEMS_IN_VEC), v_src5); \
|
||||
} \
|
||||
\
|
||||
bool support; \
|
||||
}
|
||||
|
||||
#define SPLIT4_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \
|
||||
template <> \
|
||||
struct VSplit4<data_type> \
|
||||
{ \
|
||||
enum \
|
||||
{ \
|
||||
ELEMS_IN_VEC = 16 / sizeof(data_type) \
|
||||
}; \
|
||||
\
|
||||
VSplit4() \
|
||||
{ \
|
||||
support = checkHardwareSupport(CV_CPU_SSE2); \
|
||||
} \
|
||||
\
|
||||
void operator()(const data_type * src, data_type * dst0, data_type * dst1, \
|
||||
data_type * dst2, data_type * dst3) const \
|
||||
{ \
|
||||
reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \
|
||||
reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \
|
||||
reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \
|
||||
reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \
|
||||
reg_type v_src4 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 4)); \
|
||||
reg_type v_src5 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 5)); \
|
||||
reg_type v_src6 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 6)); \
|
||||
reg_type v_src7 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 7)); \
|
||||
\
|
||||
_mm_deinterleave(v_src0, v_src1, v_src2, v_src3, \
|
||||
v_src4, v_src5, v_src6, v_src7); \
|
||||
\
|
||||
_mm_storeu_##flavor((cast_type *)(dst0), v_src0); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst1), v_src2); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst2), v_src4); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst2 + ELEMS_IN_VEC), v_src5); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst3), v_src6); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst3 + ELEMS_IN_VEC), v_src7); \
|
||||
} \
|
||||
\
|
||||
bool support; \
|
||||
}
|
||||
|
||||
SPLIT2_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128);
|
||||
SPLIT2_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128);
|
||||
SPLIT2_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps);
|
||||
|
||||
SPLIT3_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128);
|
||||
SPLIT3_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128);
|
||||
SPLIT3_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps);
|
||||
|
||||
SPLIT4_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128);
|
||||
SPLIT4_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128);
|
||||
SPLIT4_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps);
|
||||
|
||||
#endif
|
||||
|
||||
template<typename T> static void
|
||||
split_( const T* src, T** dst, int len, int cn )
|
||||
{
|
||||
int k = cn % 4 ? cn % 4 : 4;
|
||||
int i, j;
|
||||
if( k == 1 )
|
||||
{
|
||||
T* dst0 = dst[0];
|
||||
|
||||
if(cn == 1)
|
||||
{
|
||||
memcpy(dst0, src, len * sizeof(T));
|
||||
}
|
||||
else
|
||||
{
|
||||
for( i = 0, j = 0 ; i < len; i++, j += cn )
|
||||
dst0[i] = src[j];
|
||||
}
|
||||
}
|
||||
else if( k == 2 )
|
||||
{
|
||||
T *dst0 = dst[0], *dst1 = dst[1];
|
||||
i = j = 0;
|
||||
|
||||
#if CV_NEON
|
||||
if(cn == 2)
|
||||
{
|
||||
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
|
||||
int inc_j = 2 * inc_i;
|
||||
|
||||
VSplit2<T> vsplit;
|
||||
for( ; i < len - inc_i; i += inc_i, j += inc_j)
|
||||
vsplit(src + j, dst0 + i, dst1 + i);
|
||||
}
|
||||
#elif CV_SSE2
|
||||
if (cn == 2)
|
||||
{
|
||||
int inc_i = 32/sizeof(T);
|
||||
int inc_j = 2 * inc_i;
|
||||
|
||||
VSplit2<T> vsplit;
|
||||
if (vsplit.support)
|
||||
{
|
||||
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
|
||||
vsplit(src + j, dst0 + i, dst1 + i);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for( ; i < len; i++, j += cn )
|
||||
{
|
||||
dst0[i] = src[j];
|
||||
dst1[i] = src[j+1];
|
||||
}
|
||||
}
|
||||
else if( k == 3 )
|
||||
{
|
||||
T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2];
|
||||
i = j = 0;
|
||||
|
||||
#if CV_NEON
|
||||
if(cn == 3)
|
||||
{
|
||||
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
|
||||
int inc_j = 3 * inc_i;
|
||||
|
||||
VSplit3<T> vsplit;
|
||||
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
|
||||
vsplit(src + j, dst0 + i, dst1 + i, dst2 + i);
|
||||
}
|
||||
#elif CV_SSE2
|
||||
if (cn == 3)
|
||||
{
|
||||
int inc_i = 32/sizeof(T);
|
||||
int inc_j = 3 * inc_i;
|
||||
|
||||
VSplit3<T> vsplit;
|
||||
|
||||
if (vsplit.support)
|
||||
{
|
||||
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
|
||||
vsplit(src + j, dst0 + i, dst1 + i, dst2 + i);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for( ; i < len; i++, j += cn )
|
||||
{
|
||||
dst0[i] = src[j];
|
||||
dst1[i] = src[j+1];
|
||||
dst2[i] = src[j+2];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2], *dst3 = dst[3];
|
||||
i = j = 0;
|
||||
|
||||
#if CV_NEON
|
||||
if(cn == 4)
|
||||
{
|
||||
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
|
||||
int inc_j = 4 * inc_i;
|
||||
|
||||
VSplit4<T> vsplit;
|
||||
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
|
||||
vsplit(src + j, dst0 + i, dst1 + i, dst2 + i, dst3 + i);
|
||||
}
|
||||
#elif CV_SSE2
|
||||
if (cn == 4)
|
||||
{
|
||||
int inc_i = 32/sizeof(T);
|
||||
int inc_j = 4 * inc_i;
|
||||
|
||||
VSplit4<T> vsplit;
|
||||
if (vsplit.support)
|
||||
{
|
||||
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
|
||||
vsplit(src + j, dst0 + i, dst1 + i, dst2 + i, dst3 + i);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for( ; i < len; i++, j += cn )
|
||||
{
|
||||
dst0[i] = src[j]; dst1[i] = src[j+1];
|
||||
dst2[i] = src[j+2]; dst3[i] = src[j+3];
|
||||
}
|
||||
}
|
||||
|
||||
for( ; k < cn; k += 4 )
|
||||
{
|
||||
T *dst0 = dst[k], *dst1 = dst[k+1], *dst2 = dst[k+2], *dst3 = dst[k+3];
|
||||
for( i = 0, j = k; i < len; i++, j += cn )
|
||||
{
|
||||
dst0[i] = src[j]; dst1[i] = src[j+1];
|
||||
dst2[i] = src[j+2]; dst3[i] = src[j+3];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#if CV_NEON
|
||||
template<typename T> struct VMerge2;
|
||||
template<typename T> struct VMerge3;
|
||||
template<typename T> struct VMerge4;
|
||||
|
||||
#define MERGE2_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
|
||||
template<> \
|
||||
struct name<data_type>{ \
|
||||
void operator()(const data_type* src0, const data_type* src1, \
|
||||
data_type* dst){ \
|
||||
reg_type r; \
|
||||
r.val[0] = load_func(src0); \
|
||||
r.val[1] = load_func(src1); \
|
||||
store_func(dst, r); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define MERGE3_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
|
||||
template<> \
|
||||
struct name<data_type>{ \
|
||||
void operator()(const data_type* src0, const data_type* src1, \
|
||||
const data_type* src2, data_type* dst){ \
|
||||
reg_type r; \
|
||||
r.val[0] = load_func(src0); \
|
||||
r.val[1] = load_func(src1); \
|
||||
r.val[2] = load_func(src2); \
|
||||
store_func(dst, r); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define MERGE4_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
|
||||
template<> \
|
||||
struct name<data_type>{ \
|
||||
void operator()(const data_type* src0, const data_type* src1, \
|
||||
const data_type* src2, const data_type* src3, \
|
||||
data_type* dst){ \
|
||||
reg_type r; \
|
||||
r.val[0] = load_func(src0); \
|
||||
r.val[1] = load_func(src1); \
|
||||
r.val[2] = load_func(src2); \
|
||||
r.val[3] = load_func(src3); \
|
||||
store_func(dst, r); \
|
||||
} \
|
||||
}
|
||||
|
||||
MERGE2_KERNEL_TEMPLATE(VMerge2, uchar , uint8x16x2_t, vld1q_u8 , vst2q_u8 );
|
||||
MERGE2_KERNEL_TEMPLATE(VMerge2, ushort, uint16x8x2_t, vld1q_u16, vst2q_u16);
|
||||
MERGE2_KERNEL_TEMPLATE(VMerge2, int , int32x4x2_t, vld1q_s32, vst2q_s32);
|
||||
MERGE2_KERNEL_TEMPLATE(VMerge2, int64 , int64x1x2_t, vld1_s64 , vst2_s64 );
|
||||
|
||||
MERGE3_KERNEL_TEMPLATE(VMerge3, uchar , uint8x16x3_t, vld1q_u8 , vst3q_u8 );
|
||||
MERGE3_KERNEL_TEMPLATE(VMerge3, ushort, uint16x8x3_t, vld1q_u16, vst3q_u16);
|
||||
MERGE3_KERNEL_TEMPLATE(VMerge3, int , int32x4x3_t, vld1q_s32, vst3q_s32);
|
||||
MERGE3_KERNEL_TEMPLATE(VMerge3, int64 , int64x1x3_t, vld1_s64 , vst3_s64 );
|
||||
|
||||
MERGE4_KERNEL_TEMPLATE(VMerge4, uchar , uint8x16x4_t, vld1q_u8 , vst4q_u8 );
|
||||
MERGE4_KERNEL_TEMPLATE(VMerge4, ushort, uint16x8x4_t, vld1q_u16, vst4q_u16);
|
||||
MERGE4_KERNEL_TEMPLATE(VMerge4, int , int32x4x4_t, vld1q_s32, vst4q_s32);
|
||||
MERGE4_KERNEL_TEMPLATE(VMerge4, int64 , int64x1x4_t, vld1_s64 , vst4_s64 );
|
||||
|
||||
#elif CV_SSE2
|
||||
|
||||
template <typename T>
|
||||
struct VMerge2
|
||||
{
|
||||
VMerge2() : support(false) { }
|
||||
void operator()(const T *, const T *, T *) const { }
|
||||
|
||||
bool support;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct VMerge3
|
||||
{
|
||||
VMerge3() : support(false) { }
|
||||
void operator()(const T *, const T *, const T *, T *) const { }
|
||||
|
||||
bool support;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct VMerge4
|
||||
{
|
||||
VMerge4() : support(false) { }
|
||||
void operator()(const T *, const T *, const T *, const T *, T *) const { }
|
||||
|
||||
bool support;
|
||||
};
|
||||
|
||||
#define MERGE2_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_interleave, flavor, se) \
|
||||
template <> \
|
||||
struct VMerge2<data_type> \
|
||||
{ \
|
||||
enum \
|
||||
{ \
|
||||
ELEMS_IN_VEC = 16 / sizeof(data_type) \
|
||||
}; \
|
||||
\
|
||||
VMerge2() \
|
||||
{ \
|
||||
support = checkHardwareSupport(se); \
|
||||
} \
|
||||
\
|
||||
void operator()(const data_type * src0, const data_type * src1, \
|
||||
data_type * dst) const \
|
||||
{ \
|
||||
reg_type v_src0 = _mm_loadu_##flavor((const cast_type *)(src0)); \
|
||||
reg_type v_src1 = _mm_loadu_##flavor((const cast_type *)(src0 + ELEMS_IN_VEC)); \
|
||||
reg_type v_src2 = _mm_loadu_##flavor((const cast_type *)(src1)); \
|
||||
reg_type v_src3 = _mm_loadu_##flavor((const cast_type *)(src1 + ELEMS_IN_VEC)); \
|
||||
\
|
||||
_mm_interleave(v_src0, v_src1, v_src2, v_src3); \
|
||||
\
|
||||
_mm_storeu_##flavor((cast_type *)(dst), v_src0); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC), v_src1); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 2), v_src2); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 3), v_src3); \
|
||||
} \
|
||||
\
|
||||
bool support; \
|
||||
}
|
||||
|
||||
#define MERGE3_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_interleave, flavor, se) \
|
||||
template <> \
|
||||
struct VMerge3<data_type> \
|
||||
{ \
|
||||
enum \
|
||||
{ \
|
||||
ELEMS_IN_VEC = 16 / sizeof(data_type) \
|
||||
}; \
|
||||
\
|
||||
VMerge3() \
|
||||
{ \
|
||||
support = checkHardwareSupport(se); \
|
||||
} \
|
||||
\
|
||||
void operator()(const data_type * src0, const data_type * src1, const data_type * src2,\
|
||||
data_type * dst) const \
|
||||
{ \
|
||||
reg_type v_src0 = _mm_loadu_##flavor((const cast_type *)(src0)); \
|
||||
reg_type v_src1 = _mm_loadu_##flavor((const cast_type *)(src0 + ELEMS_IN_VEC)); \
|
||||
reg_type v_src2 = _mm_loadu_##flavor((const cast_type *)(src1)); \
|
||||
reg_type v_src3 = _mm_loadu_##flavor((const cast_type *)(src1 + ELEMS_IN_VEC)); \
|
||||
reg_type v_src4 = _mm_loadu_##flavor((const cast_type *)(src2)); \
|
||||
reg_type v_src5 = _mm_loadu_##flavor((const cast_type *)(src2 + ELEMS_IN_VEC)); \
|
||||
\
|
||||
_mm_interleave(v_src0, v_src1, v_src2, \
|
||||
v_src3, v_src4, v_src5); \
|
||||
\
|
||||
_mm_storeu_##flavor((cast_type *)(dst), v_src0); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC), v_src1); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 2), v_src2); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 3), v_src3); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 4), v_src4); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 5), v_src5); \
|
||||
} \
|
||||
\
|
||||
bool support; \
|
||||
}
|
||||
|
||||
#define MERGE4_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_interleave, flavor, se) \
|
||||
template <> \
|
||||
struct VMerge4<data_type> \
|
||||
{ \
|
||||
enum \
|
||||
{ \
|
||||
ELEMS_IN_VEC = 16 / sizeof(data_type) \
|
||||
}; \
|
||||
\
|
||||
VMerge4() \
|
||||
{ \
|
||||
support = checkHardwareSupport(se); \
|
||||
} \
|
||||
\
|
||||
void operator()(const data_type * src0, const data_type * src1, \
|
||||
const data_type * src2, const data_type * src3, \
|
||||
data_type * dst) const \
|
||||
{ \
|
||||
reg_type v_src0 = _mm_loadu_##flavor((const cast_type *)(src0)); \
|
||||
reg_type v_src1 = _mm_loadu_##flavor((const cast_type *)(src0 + ELEMS_IN_VEC)); \
|
||||
reg_type v_src2 = _mm_loadu_##flavor((const cast_type *)(src1)); \
|
||||
reg_type v_src3 = _mm_loadu_##flavor((const cast_type *)(src1 + ELEMS_IN_VEC)); \
|
||||
reg_type v_src4 = _mm_loadu_##flavor((const cast_type *)(src2)); \
|
||||
reg_type v_src5 = _mm_loadu_##flavor((const cast_type *)(src2 + ELEMS_IN_VEC)); \
|
||||
reg_type v_src6 = _mm_loadu_##flavor((const cast_type *)(src3)); \
|
||||
reg_type v_src7 = _mm_loadu_##flavor((const cast_type *)(src3 + ELEMS_IN_VEC)); \
|
||||
\
|
||||
_mm_interleave(v_src0, v_src1, v_src2, v_src3, \
|
||||
v_src4, v_src5, v_src6, v_src7); \
|
||||
\
|
||||
_mm_storeu_##flavor((cast_type *)(dst), v_src0); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC), v_src1); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 2), v_src2); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 3), v_src3); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 4), v_src4); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 5), v_src5); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 6), v_src6); \
|
||||
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 7), v_src7); \
|
||||
} \
|
||||
\
|
||||
bool support; \
|
||||
}
|
||||
|
||||
MERGE2_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_interleave_epi8, si128, CV_CPU_SSE2);
|
||||
MERGE3_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_interleave_epi8, si128, CV_CPU_SSE2);
|
||||
MERGE4_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_interleave_epi8, si128, CV_CPU_SSE2);
|
||||
|
||||
#if CV_SSE4_1
|
||||
MERGE2_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_interleave_epi16, si128, CV_CPU_SSE4_1);
|
||||
MERGE3_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_interleave_epi16, si128, CV_CPU_SSE4_1);
|
||||
MERGE4_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_interleave_epi16, si128, CV_CPU_SSE4_1);
|
||||
#endif
|
||||
|
||||
MERGE2_KERNEL_TEMPLATE( int, __m128, float, _mm_interleave_ps, ps, CV_CPU_SSE2);
|
||||
MERGE3_KERNEL_TEMPLATE( int, __m128, float, _mm_interleave_ps, ps, CV_CPU_SSE2);
|
||||
MERGE4_KERNEL_TEMPLATE( int, __m128, float, _mm_interleave_ps, ps, CV_CPU_SSE2);
|
||||
|
||||
#endif
|
||||
|
||||
template<typename T> static void
|
||||
merge_( const T** src, T* dst, int len, int cn )
|
||||
{
|
||||
int k = cn % 4 ? cn % 4 : 4;
|
||||
int i, j;
|
||||
if( k == 1 )
|
||||
{
|
||||
const T* src0 = src[0];
|
||||
for( i = j = 0; i < len; i++, j += cn )
|
||||
dst[j] = src0[i];
|
||||
}
|
||||
else if( k == 2 )
|
||||
{
|
||||
const T *src0 = src[0], *src1 = src[1];
|
||||
i = j = 0;
|
||||
#if CV_NEON
|
||||
if(cn == 2)
|
||||
{
|
||||
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
|
||||
int inc_j = 2 * inc_i;
|
||||
|
||||
VMerge2<T> vmerge;
|
||||
for( ; i < len - inc_i; i += inc_i, j += inc_j)
|
||||
vmerge(src0 + i, src1 + i, dst + j);
|
||||
}
|
||||
#elif CV_SSE2
|
||||
if(cn == 2)
|
||||
{
|
||||
int inc_i = 32/sizeof(T);
|
||||
int inc_j = 2 * inc_i;
|
||||
|
||||
VMerge2<T> vmerge;
|
||||
if (vmerge.support)
|
||||
for( ; i < len - inc_i; i += inc_i, j += inc_j)
|
||||
vmerge(src0 + i, src1 + i, dst + j);
|
||||
}
|
||||
#endif
|
||||
for( ; i < len; i++, j += cn )
|
||||
{
|
||||
dst[j] = src0[i];
|
||||
dst[j+1] = src1[i];
|
||||
}
|
||||
}
|
||||
else if( k == 3 )
|
||||
{
|
||||
const T *src0 = src[0], *src1 = src[1], *src2 = src[2];
|
||||
i = j = 0;
|
||||
#if CV_NEON
|
||||
if(cn == 3)
|
||||
{
|
||||
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
|
||||
int inc_j = 3 * inc_i;
|
||||
|
||||
VMerge3<T> vmerge;
|
||||
for( ; i < len - inc_i; i += inc_i, j += inc_j)
|
||||
vmerge(src0 + i, src1 + i, src2 + i, dst + j);
|
||||
}
|
||||
#elif CV_SSE2
|
||||
if(cn == 3)
|
||||
{
|
||||
int inc_i = 32/sizeof(T);
|
||||
int inc_j = 3 * inc_i;
|
||||
|
||||
VMerge3<T> vmerge;
|
||||
if (vmerge.support)
|
||||
for( ; i < len - inc_i; i += inc_i, j += inc_j)
|
||||
vmerge(src0 + i, src1 + i, src2 + i, dst + j);
|
||||
}
|
||||
#endif
|
||||
for( ; i < len; i++, j += cn )
|
||||
{
|
||||
dst[j] = src0[i];
|
||||
dst[j+1] = src1[i];
|
||||
dst[j+2] = src2[i];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
const T *src0 = src[0], *src1 = src[1], *src2 = src[2], *src3 = src[3];
|
||||
i = j = 0;
|
||||
#if CV_NEON
|
||||
if(cn == 4)
|
||||
{
|
||||
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
|
||||
int inc_j = 4 * inc_i;
|
||||
|
||||
VMerge4<T> vmerge;
|
||||
for( ; i < len - inc_i; i += inc_i, j += inc_j)
|
||||
vmerge(src0 + i, src1 + i, src2 + i, src3 + i, dst + j);
|
||||
}
|
||||
#elif CV_SSE2
|
||||
if(cn == 4)
|
||||
{
|
||||
int inc_i = 32/sizeof(T);
|
||||
int inc_j = 4 * inc_i;
|
||||
|
||||
VMerge4<T> vmerge;
|
||||
if (vmerge.support)
|
||||
for( ; i < len - inc_i; i += inc_i, j += inc_j)
|
||||
vmerge(src0 + i, src1 + i, src2 + i, src3 + i, dst + j);
|
||||
}
|
||||
#endif
|
||||
for( ; i < len; i++, j += cn )
|
||||
{
|
||||
dst[j] = src0[i]; dst[j+1] = src1[i];
|
||||
dst[j+2] = src2[i]; dst[j+3] = src3[i];
|
||||
}
|
||||
}
|
||||
|
||||
for( ; k < cn; k += 4 )
|
||||
{
|
||||
const T *src0 = src[k], *src1 = src[k+1], *src2 = src[k+2], *src3 = src[k+3];
|
||||
for( i = 0, j = k; i < len; i++, j += cn )
|
||||
{
|
||||
dst[j] = src0[i]; dst[j+1] = src1[i];
|
||||
dst[j+2] = src2[i]; dst[j+3] = src3[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void split8u(const uchar* src, uchar** dst, int len, int cn )
|
||||
{
|
||||
split_(src, dst, len, cn);
|
||||
}
|
||||
|
||||
static void split16u(const ushort* src, ushort** dst, int len, int cn )
|
||||
{
|
||||
split_(src, dst, len, cn);
|
||||
}
|
||||
|
||||
static void split32s(const int* src, int** dst, int len, int cn )
|
||||
{
|
||||
split_(src, dst, len, cn);
|
||||
}
|
||||
|
||||
static void split64s(const int64* src, int64** dst, int len, int cn )
|
||||
{
|
||||
split_(src, dst, len, cn);
|
||||
}
|
||||
|
||||
static void merge8u(const uchar** src, uchar* dst, int len, int cn )
|
||||
{
|
||||
merge_(src, dst, len, cn);
|
||||
}
|
||||
|
||||
static void merge16u(const ushort** src, ushort* dst, int len, int cn )
|
||||
{
|
||||
merge_(src, dst, len, cn);
|
||||
}
|
||||
|
||||
static void merge32s(const int** src, int* dst, int len, int cn )
|
||||
{
|
||||
merge_(src, dst, len, cn);
|
||||
}
|
||||
|
||||
static void merge64s(const int64** src, int64* dst, int len, int cn )
|
||||
{
|
||||
merge_(src, dst, len, cn);
|
||||
}
|
||||
|
||||
typedef void (*SplitFunc)(const uchar* src, uchar** dst, int len, int cn);
|
||||
typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn);
|
||||
|
||||
static SplitFunc getSplitFunc(int depth)
|
||||
{
|
||||
static SplitFunc splitTab[] =
|
||||
{
|
||||
(SplitFunc)GET_OPTIMIZED(split8u), (SplitFunc)GET_OPTIMIZED(split8u), (SplitFunc)GET_OPTIMIZED(split16u), (SplitFunc)GET_OPTIMIZED(split16u),
|
||||
(SplitFunc)GET_OPTIMIZED(split32s), (SplitFunc)GET_OPTIMIZED(split32s), (SplitFunc)GET_OPTIMIZED(split64s), 0
|
||||
(SplitFunc)GET_OPTIMIZED(cv::hal::split8u), (SplitFunc)GET_OPTIMIZED(cv::hal::split8u), (SplitFunc)GET_OPTIMIZED(cv::hal::split16u), (SplitFunc)GET_OPTIMIZED(cv::hal::split16u),
|
||||
(SplitFunc)GET_OPTIMIZED(cv::hal::split32s), (SplitFunc)GET_OPTIMIZED(cv::hal::split32s), (SplitFunc)GET_OPTIMIZED(cv::hal::split64s), 0
|
||||
};
|
||||
|
||||
return splitTab[depth];
|
||||
}
|
||||
|
||||
typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn);
|
||||
|
||||
static MergeFunc getMergeFunc(int depth)
|
||||
{
|
||||
static MergeFunc mergeTab[] =
|
||||
{
|
||||
(MergeFunc)GET_OPTIMIZED(merge8u), (MergeFunc)GET_OPTIMIZED(merge8u), (MergeFunc)GET_OPTIMIZED(merge16u), (MergeFunc)GET_OPTIMIZED(merge16u),
|
||||
(MergeFunc)GET_OPTIMIZED(merge32s), (MergeFunc)GET_OPTIMIZED(merge32s), (MergeFunc)GET_OPTIMIZED(merge64s), 0
|
||||
(MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u),
|
||||
(MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge64s), 0
|
||||
};
|
||||
|
||||
return mergeTab[depth];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void cv::split(const Mat& src, Mat* mv)
|
||||
{
|
||||
int k, depth = src.depth(), cn = src.channels();
|
||||
|
@@ -83,6 +83,11 @@ typedef void (*BinaryFunc)(const uchar* src1, size_t step1,
|
||||
uchar* dst, size_t step, Size sz,
|
||||
void*);
|
||||
|
||||
typedef void (*BinaryFuncC)(const uchar* src1, size_t step1,
|
||||
const uchar* src2, size_t step2,
|
||||
uchar* dst, size_t step, int width, int height,
|
||||
void*);
|
||||
|
||||
BinaryFunc getConvertFunc(int sdepth, int ddepth);
|
||||
BinaryFunc getCopyMaskFunc(size_t esz);
|
||||
|
||||
@@ -114,46 +119,6 @@ extern const uchar g_Saturate8u[];
|
||||
void deleteThreadAllocData();
|
||||
#endif
|
||||
|
||||
template<typename T1, typename T2=T1, typename T3=T1> struct OpAdd
|
||||
{
|
||||
typedef T1 type1;
|
||||
typedef T2 type2;
|
||||
typedef T3 rtype;
|
||||
T3 operator ()(const T1 a, const T2 b) const { return saturate_cast<T3>(a + b); }
|
||||
};
|
||||
|
||||
template<typename T1, typename T2=T1, typename T3=T1> struct OpSub
|
||||
{
|
||||
typedef T1 type1;
|
||||
typedef T2 type2;
|
||||
typedef T3 rtype;
|
||||
T3 operator ()(const T1 a, const T2 b) const { return saturate_cast<T3>(a - b); }
|
||||
};
|
||||
|
||||
template<typename T1, typename T2=T1, typename T3=T1> struct OpRSub
|
||||
{
|
||||
typedef T1 type1;
|
||||
typedef T2 type2;
|
||||
typedef T3 rtype;
|
||||
T3 operator ()(const T1 a, const T2 b) const { return saturate_cast<T3>(b - a); }
|
||||
};
|
||||
|
||||
template<typename T> struct OpMin
|
||||
{
|
||||
typedef T type1;
|
||||
typedef T type2;
|
||||
typedef T rtype;
|
||||
T operator ()(const T a, const T b) const { return std::min(a, b); }
|
||||
};
|
||||
|
||||
template<typename T> struct OpMax
|
||||
{
|
||||
typedef T type1;
|
||||
typedef T type2;
|
||||
typedef T rtype;
|
||||
T operator ()(const T a, const T b) const { return std::max(a, b); }
|
||||
};
|
||||
|
||||
inline Size getContinuousSize_( int flags, int cols, int rows, int widthScale )
|
||||
{
|
||||
int64 sz = (int64)cols * rows * widthScale;
|
||||
@@ -201,11 +166,6 @@ struct NoVec
|
||||
size_t operator()(const void*, const void*, void*, size_t) const { return 0; }
|
||||
};
|
||||
|
||||
extern volatile bool USE_SSE2;
|
||||
extern volatile bool USE_SSE4_2;
|
||||
extern volatile bool USE_AVX;
|
||||
extern volatile bool USE_AVX2;
|
||||
|
||||
enum { BLOCK_SIZE = 1024 };
|
||||
|
||||
#if defined HAVE_IPP && (IPP_VERSION_X100 >= 700)
|
||||
|
@@ -86,45 +86,6 @@ Mutex* __initialization_mutex_initializer = &getInitializationMutex();
|
||||
#undef max
|
||||
#undef abs
|
||||
#include <tchar.h>
|
||||
#if defined _MSC_VER
|
||||
#if _MSC_VER >= 1400
|
||||
#include <intrin.h>
|
||||
#elif defined _M_IX86
|
||||
static void __cpuid(int* cpuid_data, int)
|
||||
{
|
||||
__asm
|
||||
{
|
||||
push ebx
|
||||
push edi
|
||||
mov edi, cpuid_data
|
||||
mov eax, 1
|
||||
cpuid
|
||||
mov [edi], eax
|
||||
mov [edi + 4], ebx
|
||||
mov [edi + 8], ecx
|
||||
mov [edi + 12], edx
|
||||
pop edi
|
||||
pop ebx
|
||||
}
|
||||
}
|
||||
static void __cpuidex(int* cpuid_data, int, int)
|
||||
{
|
||||
__asm
|
||||
{
|
||||
push edi
|
||||
mov edi, cpuid_data
|
||||
mov eax, 7
|
||||
mov ecx, 0
|
||||
cpuid
|
||||
mov [edi], eax
|
||||
mov [edi + 4], ebx
|
||||
mov [edi + 8], ecx
|
||||
mov [edi + 12], edx
|
||||
pop edi
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef WINRT
|
||||
#include <wrl/client.h>
|
||||
@@ -237,160 +198,15 @@ void Exception::formatMessage()
|
||||
msg = format("%s:%d: error: (%d) %s\n", file.c_str(), line, code, err.c_str());
|
||||
}
|
||||
|
||||
struct HWFeatures
|
||||
{
|
||||
enum { MAX_FEATURE = CV_HARDWARE_MAX_FEATURE };
|
||||
|
||||
HWFeatures(void)
|
||||
{
|
||||
memset( have, 0, sizeof(have) );
|
||||
x86_family = 0;
|
||||
}
|
||||
|
||||
static HWFeatures initialize(void)
|
||||
{
|
||||
HWFeatures f;
|
||||
int cpuid_data[4] = { 0, 0, 0, 0 };
|
||||
|
||||
#if defined _MSC_VER && (defined _M_IX86 || defined _M_X64)
|
||||
__cpuid(cpuid_data, 1);
|
||||
#elif defined __GNUC__ && (defined __i386__ || defined __x86_64__)
|
||||
#ifdef __x86_64__
|
||||
asm __volatile__
|
||||
(
|
||||
"movl $1, %%eax\n\t"
|
||||
"cpuid\n\t"
|
||||
:[eax]"=a"(cpuid_data[0]),[ebx]"=b"(cpuid_data[1]),[ecx]"=c"(cpuid_data[2]),[edx]"=d"(cpuid_data[3])
|
||||
:
|
||||
: "cc"
|
||||
);
|
||||
#else
|
||||
asm volatile
|
||||
(
|
||||
"pushl %%ebx\n\t"
|
||||
"movl $1,%%eax\n\t"
|
||||
"cpuid\n\t"
|
||||
"popl %%ebx\n\t"
|
||||
: "=a"(cpuid_data[0]), "=c"(cpuid_data[2]), "=d"(cpuid_data[3])
|
||||
:
|
||||
: "cc"
|
||||
);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
f.x86_family = (cpuid_data[0] >> 8) & 15;
|
||||
if( f.x86_family >= 6 )
|
||||
{
|
||||
f.have[CV_CPU_MMX] = (cpuid_data[3] & (1 << 23)) != 0;
|
||||
f.have[CV_CPU_SSE] = (cpuid_data[3] & (1<<25)) != 0;
|
||||
f.have[CV_CPU_SSE2] = (cpuid_data[3] & (1<<26)) != 0;
|
||||
f.have[CV_CPU_SSE3] = (cpuid_data[2] & (1<<0)) != 0;
|
||||
f.have[CV_CPU_SSSE3] = (cpuid_data[2] & (1<<9)) != 0;
|
||||
f.have[CV_CPU_FMA3] = (cpuid_data[2] & (1<<12)) != 0;
|
||||
f.have[CV_CPU_SSE4_1] = (cpuid_data[2] & (1<<19)) != 0;
|
||||
f.have[CV_CPU_SSE4_2] = (cpuid_data[2] & (1<<20)) != 0;
|
||||
f.have[CV_CPU_POPCNT] = (cpuid_data[2] & (1<<23)) != 0;
|
||||
f.have[CV_CPU_AVX] = (((cpuid_data[2] & (1<<28)) != 0)&&((cpuid_data[2] & (1<<27)) != 0));//OS uses XSAVE_XRSTORE and CPU support AVX
|
||||
|
||||
// make the second call to the cpuid command in order to get
|
||||
// information about extended features like AVX2
|
||||
#if defined _MSC_VER && (defined _M_IX86 || defined _M_X64)
|
||||
__cpuidex(cpuid_data, 7, 0);
|
||||
#elif defined __GNUC__ && (defined __i386__ || defined __x86_64__)
|
||||
#ifdef __x86_64__
|
||||
asm __volatile__
|
||||
(
|
||||
"movl $7, %%eax\n\t"
|
||||
"movl $0, %%ecx\n\t"
|
||||
"cpuid\n\t"
|
||||
:[eax]"=a"(cpuid_data[0]),[ebx]"=b"(cpuid_data[1]),[ecx]"=c"(cpuid_data[2]),[edx]"=d"(cpuid_data[3])
|
||||
:
|
||||
: "cc"
|
||||
);
|
||||
#else
|
||||
asm volatile
|
||||
(
|
||||
"pushl %%ebx\n\t"
|
||||
"movl $7,%%eax\n\t"
|
||||
"movl $0,%%ecx\n\t"
|
||||
"cpuid\n\t"
|
||||
"movl %%ebx, %0\n\t"
|
||||
"popl %%ebx\n\t"
|
||||
: "=r"(cpuid_data[1]), "=c"(cpuid_data[2])
|
||||
:
|
||||
: "cc"
|
||||
);
|
||||
#endif
|
||||
#endif
|
||||
f.have[CV_CPU_AVX2] = (cpuid_data[1] & (1<<5)) != 0;
|
||||
|
||||
f.have[CV_CPU_AVX_512F] = (cpuid_data[1] & (1<<16)) != 0;
|
||||
f.have[CV_CPU_AVX_512DQ] = (cpuid_data[1] & (1<<17)) != 0;
|
||||
f.have[CV_CPU_AVX_512IFMA512] = (cpuid_data[1] & (1<<21)) != 0;
|
||||
f.have[CV_CPU_AVX_512PF] = (cpuid_data[1] & (1<<26)) != 0;
|
||||
f.have[CV_CPU_AVX_512ER] = (cpuid_data[1] & (1<<27)) != 0;
|
||||
f.have[CV_CPU_AVX_512CD] = (cpuid_data[1] & (1<<28)) != 0;
|
||||
f.have[CV_CPU_AVX_512BW] = (cpuid_data[1] & (1<<30)) != 0;
|
||||
f.have[CV_CPU_AVX_512VL] = (cpuid_data[1] & (1<<31)) != 0;
|
||||
f.have[CV_CPU_AVX_512VBMI] = (cpuid_data[2] & (1<<1)) != 0;
|
||||
}
|
||||
|
||||
#if defined ANDROID || defined __linux__
|
||||
#ifdef __aarch64__
|
||||
f.have[CV_CPU_NEON] = true;
|
||||
#else
|
||||
int cpufile = open("/proc/self/auxv", O_RDONLY);
|
||||
|
||||
if (cpufile >= 0)
|
||||
{
|
||||
Elf32_auxv_t auxv;
|
||||
const size_t size_auxv_t = sizeof(auxv);
|
||||
|
||||
while ((size_t)read(cpufile, &auxv, size_auxv_t) == size_auxv_t)
|
||||
{
|
||||
if (auxv.a_type == AT_HWCAP)
|
||||
{
|
||||
f.have[CV_CPU_NEON] = (auxv.a_un.a_val & 4096) != 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
close(cpufile);
|
||||
}
|
||||
#endif
|
||||
#elif (defined __clang__ || defined __APPLE__) && (defined __ARM_NEON__ || (defined __ARM_NEON && defined __aarch64__))
|
||||
f.have[CV_CPU_NEON] = true;
|
||||
#endif
|
||||
|
||||
return f;
|
||||
}
|
||||
|
||||
int x86_family;
|
||||
bool have[MAX_FEATURE+1];
|
||||
};
|
||||
|
||||
static HWFeatures featuresEnabled = HWFeatures::initialize(), featuresDisabled = HWFeatures();
|
||||
static HWFeatures* currentFeatures = &featuresEnabled;
|
||||
|
||||
bool checkHardwareSupport(int feature)
|
||||
{
|
||||
CV_DbgAssert( 0 <= feature && feature <= CV_HARDWARE_MAX_FEATURE );
|
||||
return currentFeatures->have[feature];
|
||||
return cv::hal::checkHardwareSupport(feature);
|
||||
}
|
||||
|
||||
|
||||
volatile bool useOptimizedFlag = true;
|
||||
|
||||
volatile bool USE_SSE2 = featuresEnabled.have[CV_CPU_SSE2];
|
||||
volatile bool USE_SSE4_2 = featuresEnabled.have[CV_CPU_SSE4_2];
|
||||
volatile bool USE_AVX = featuresEnabled.have[CV_CPU_AVX];
|
||||
volatile bool USE_AVX2 = featuresEnabled.have[CV_CPU_AVX2];
|
||||
|
||||
void setUseOptimized( bool flag )
|
||||
{
|
||||
useOptimizedFlag = flag;
|
||||
currentFeatures = flag ? &featuresEnabled : &featuresDisabled;
|
||||
USE_SSE2 = currentFeatures->have[CV_CPU_SSE2];
|
||||
cv::hal::setUseOptimized(flag);
|
||||
|
||||
ipp::setUseIPP(flag);
|
||||
#ifdef HAVE_OPENCL
|
||||
@@ -403,7 +219,7 @@ void setUseOptimized( bool flag )
|
||||
|
||||
bool useOptimized(void)
|
||||
{
|
||||
return useOptimizedFlag;
|
||||
return cv::hal::useOptimized();
|
||||
}
|
||||
|
||||
int64 getTickCount(void)
|
||||
@@ -683,12 +499,12 @@ redirectError( CvErrorCallback errCallback, void* userdata, void** prevUserdata)
|
||||
CV_IMPL int cvCheckHardwareSupport(int feature)
|
||||
{
|
||||
CV_DbgAssert( 0 <= feature && feature <= CV_HARDWARE_MAX_FEATURE );
|
||||
return cv::currentFeatures->have[feature];
|
||||
return cv::hal::checkHardwareSupport(feature);
|
||||
}
|
||||
|
||||
CV_IMPL int cvUseOptimized( int flag )
|
||||
{
|
||||
int prevMode = cv::useOptimizedFlag;
|
||||
int prevMode = cv::useOptimized();
|
||||
cv::setUseOptimized( flag != 0 );
|
||||
return prevMode;
|
||||
}
|
||||
|
Reference in New Issue
Block a user