Code tutorial
This commit is contained in:
parent
9d18f5c458
commit
b33a2f24fa
@ -0,0 +1,315 @@
|
||||
/*
|
||||
* PnPProblem.cpp
|
||||
*
|
||||
* Created on: Mar 28, 2014
|
||||
* Author: Edgar Riba
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
#include "PnPProblem.h"
|
||||
#include "Mesh.h"
|
||||
|
||||
#include <opencv2/calib3d/calib3d.hpp>
|
||||
|
||||
|
||||
/* Functions for Möller–Trumbore intersection algorithm
|
||||
* */
|
||||
cv::Point3f CROSS(cv::Point3f v1, cv::Point3f v2)
|
||||
{
|
||||
cv::Point3f tmp_p;
|
||||
tmp_p.x = v1.y*v2.z - v1.z*v2.y;
|
||||
tmp_p.y = v1.z*v2.x - v1.x*v2.z;
|
||||
tmp_p.z = v1.x*v2.y - v1.y*v2.x;
|
||||
return tmp_p;
|
||||
}
|
||||
|
||||
double DOT(cv::Point3f v1, cv::Point3f v2)
|
||||
{
|
||||
return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;
|
||||
}
|
||||
|
||||
cv::Point3f SUB(cv::Point3f v1, cv::Point3f v2)
|
||||
{
|
||||
cv::Point3f tmp_p;
|
||||
tmp_p.x = v1.x - v2.x;
|
||||
tmp_p.y = v1.y - v2.y;
|
||||
tmp_p.z = v1.z - v2.z;
|
||||
return tmp_p;
|
||||
}
|
||||
|
||||
/* End functions for Möller–Trumbore intersection algorithm
|
||||
* */
|
||||
|
||||
// Function to get the nearest 3D point to the Ray origin
|
||||
cv::Point3f get_nearest_3D_point(std::vector<cv::Point3f> &points_list, cv::Point3f origin)
|
||||
{
|
||||
cv::Point3f p1 = points_list[0];
|
||||
cv::Point3f p2 = points_list[1];
|
||||
|
||||
double d1 = std::sqrt( std::pow(p1.x-origin.x, 2) + std::pow(p1.y-origin.y, 2) + std::pow(p1.z-origin.z, 2) );
|
||||
double d2 = std::sqrt( std::pow(p2.x-origin.x, 2) + std::pow(p2.y-origin.y, 2) + std::pow(p2.z-origin.z, 2) );
|
||||
|
||||
if(d1 < d2)
|
||||
{
|
||||
return p1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return p2;
|
||||
}
|
||||
}
|
||||
|
||||
// Custom constructor given the intrinsic camera parameters
|
||||
|
||||
PnPProblem::PnPProblem(const double params[])
|
||||
{
|
||||
_A_matrix = cv::Mat::zeros(3, 3, CV_64FC1); // intrinsic camera parameters
|
||||
_A_matrix.at<double>(0, 0) = params[0]; // [ fx 0 cx ]
|
||||
_A_matrix.at<double>(1, 1) = params[1]; // [ 0 fy cy ]
|
||||
_A_matrix.at<double>(0, 2) = params[2]; // [ 0 0 1 ]
|
||||
_A_matrix.at<double>(1, 2) = params[3];
|
||||
_A_matrix.at<double>(2, 2) = 1;
|
||||
_R_matrix = cv::Mat::zeros(3, 3, CV_64FC1); // rotation matrix
|
||||
_t_matrix = cv::Mat::zeros(3, 1, CV_64FC1); // translation matrix
|
||||
_P_matrix = cv::Mat::zeros(3, 4, CV_64FC1); // rotation-translation matrix
|
||||
|
||||
}
|
||||
|
||||
PnPProblem::~PnPProblem()
|
||||
{
|
||||
// TODO Auto-generated destructor stub
|
||||
}
|
||||
|
||||
void PnPProblem::set_P_matrix( const cv::Mat &R_matrix, const cv::Mat &t_matrix)
|
||||
{
|
||||
// Rotation-Translation Matrix Definition
|
||||
_P_matrix.at<double>(0,0) = R_matrix.at<double>(0,0);
|
||||
_P_matrix.at<double>(0,1) = R_matrix.at<double>(0,1);
|
||||
_P_matrix.at<double>(0,2) = R_matrix.at<double>(0,2);
|
||||
_P_matrix.at<double>(1,0) = R_matrix.at<double>(1,0);
|
||||
_P_matrix.at<double>(1,1) = R_matrix.at<double>(1,1);
|
||||
_P_matrix.at<double>(1,2) = R_matrix.at<double>(1,2);
|
||||
_P_matrix.at<double>(2,0) = R_matrix.at<double>(2,0);
|
||||
_P_matrix.at<double>(2,1) = R_matrix.at<double>(2,1);
|
||||
_P_matrix.at<double>(0,3) = t_matrix.at<double>(0);
|
||||
_P_matrix.at<double>(1,3) = t_matrix.at<double>(1);
|
||||
_P_matrix.at<double>(2,3) = t_matrix.at<double>(2);
|
||||
}
|
||||
|
||||
|
||||
// Estimate the pose given a list of 2D/3D correspondences and the method to use
|
||||
bool PnPProblem::estimatePose( const std::vector<cv::Point3f> &list_points3d,
|
||||
const std::vector<cv::Point2f> &list_points2d,
|
||||
int flags)
|
||||
{
|
||||
cv::Mat distCoeffs = cv::Mat::zeros(4, 1, CV_64FC1);
|
||||
cv::Mat rvec = cv::Mat::zeros(3, 1, CV_64FC1);
|
||||
cv::Mat tvec = cv::Mat::zeros(3, 1, CV_64FC1);
|
||||
|
||||
bool useExtrinsicGuess = false;
|
||||
|
||||
// Pose estimation
|
||||
bool correspondence = cv::solvePnP( list_points3d, list_points2d, _A_matrix, distCoeffs, rvec, tvec,
|
||||
useExtrinsicGuess, flags);
|
||||
|
||||
// Transforms Rotation Vector to Matrix
|
||||
Rodrigues(rvec,_R_matrix);
|
||||
_t_matrix = tvec;
|
||||
|
||||
// Set projection matrix
|
||||
this->set_P_matrix(_R_matrix, _t_matrix);
|
||||
|
||||
return correspondence;
|
||||
}
|
||||
|
||||
// Estimate the pose given a list of 2D/3D correspondences with RANSAC and the method to use
|
||||
|
||||
void PnPProblem::estimatePoseRANSAC( const std::vector<cv::Point3f> &list_points3d, // list with model 3D coordinates
|
||||
const std::vector<cv::Point2f> &list_points2d, // list with scene 2D coordinates
|
||||
int flags, cv::Mat &inliers, int iterationsCount, // PnP method; inliers container
|
||||
float reprojectionError, float confidence ) // Ransac parameters
|
||||
{
|
||||
cv::Mat distCoeffs = cv::Mat::zeros(4, 1, CV_64FC1); // vector of distortion coefficients
|
||||
cv::Mat rvec = cv::Mat::zeros(3, 1, CV_64FC1); // output rotation vector
|
||||
cv::Mat tvec = cv::Mat::zeros(3, 1, CV_64FC1); // output translation vector
|
||||
|
||||
bool useExtrinsicGuess = false; // if true the function uses the provided rvec and tvec values as
|
||||
// initial approximations of the rotation and translation vectors
|
||||
|
||||
cv::solvePnPRansac( list_points3d, list_points2d, _A_matrix, distCoeffs, rvec, tvec,
|
||||
useExtrinsicGuess, iterationsCount, reprojectionError, confidence,
|
||||
inliers, flags );
|
||||
|
||||
Rodrigues(rvec,_R_matrix); // converts Rotation Vector to Matrix
|
||||
_t_matrix = tvec; // set translation matrix
|
||||
|
||||
this->set_P_matrix(_R_matrix, _t_matrix); // set rotation-translation matrix
|
||||
|
||||
}
|
||||
|
||||
// Given the mesh, backproject the 3D points to 2D to verify the pose estimation
|
||||
std::vector<cv::Point2f> PnPProblem::verify_points(Mesh *mesh)
|
||||
{
|
||||
std::vector<cv::Point2f> verified_points_2d;
|
||||
for( int i = 0; i < mesh->getNumVertices(); i++)
|
||||
{
|
||||
cv::Point3f point3d = mesh->getVertex(i);
|
||||
cv::Point2f point2d = this->backproject3DPoint(point3d);
|
||||
verified_points_2d.push_back(point2d);
|
||||
}
|
||||
|
||||
return verified_points_2d;
|
||||
}
|
||||
|
||||
|
||||
// Backproject a 3D point to 2D using the estimated pose parameters
|
||||
|
||||
cv::Point2f PnPProblem::backproject3DPoint(const cv::Point3f &point3d)
|
||||
{
|
||||
// 3D point vector [x y z 1]'
|
||||
cv::Mat point3d_vec = cv::Mat(4, 1, CV_64FC1);
|
||||
point3d_vec.at<double>(0) = point3d.x;
|
||||
point3d_vec.at<double>(1) = point3d.y;
|
||||
point3d_vec.at<double>(2) = point3d.z;
|
||||
point3d_vec.at<double>(3) = 1;
|
||||
|
||||
// 2D point vector [u v 1]'
|
||||
cv::Mat point2d_vec = cv::Mat(4, 1, CV_64FC1);
|
||||
point2d_vec = _A_matrix * _P_matrix * point3d_vec;
|
||||
|
||||
// Normalization of [u v]'
|
||||
cv::Point2f point2d;
|
||||
point2d.x = point2d_vec.at<double>(0) / point2d_vec.at<double>(2);
|
||||
point2d.y = point2d_vec.at<double>(1) / point2d_vec.at<double>(2);
|
||||
|
||||
return point2d;
|
||||
}
|
||||
|
||||
// Back project a 2D point to 3D and returns if it's on the object surface
|
||||
bool PnPProblem::backproject2DPoint(const Mesh *mesh, const cv::Point2f &point2d, cv::Point3f &point3d)
|
||||
{
|
||||
// Triangles list of the object mesh
|
||||
std::vector<std::vector<int> > triangles_list = mesh->getTrianglesList();
|
||||
|
||||
double lambda = 8;
|
||||
double u = point2d.x;
|
||||
double v = point2d.y;
|
||||
|
||||
// Point in vector form
|
||||
cv::Mat point2d_vec = cv::Mat::ones(3, 1, CV_64F); // 3x1
|
||||
point2d_vec.at<double>(0) = u * lambda;
|
||||
point2d_vec.at<double>(1) = v * lambda;
|
||||
point2d_vec.at<double>(2) = lambda;
|
||||
|
||||
// Point in camera coordinates
|
||||
cv::Mat X_c = _A_matrix.inv() * point2d_vec ; // 3x1
|
||||
|
||||
// Point in world coordinates
|
||||
cv::Mat X_w = _R_matrix.inv() * ( X_c - _t_matrix ); // 3x1
|
||||
|
||||
// Center of projection
|
||||
cv::Mat C_op = cv::Mat(_R_matrix.inv()).mul(-1) * _t_matrix; // 3x1
|
||||
|
||||
// Ray direction vector
|
||||
cv::Mat ray = X_w - C_op; // 3x1
|
||||
ray = ray / cv::norm(ray); // 3x1
|
||||
|
||||
// Set up Ray
|
||||
Ray R((cv::Point3f)C_op, (cv::Point3f)ray);
|
||||
|
||||
// A vector to store the intersections found
|
||||
std::vector<cv::Point3f> intersections_list;
|
||||
|
||||
// Loop for all the triangles and check the intersection
|
||||
for (unsigned int i = 0; i < triangles_list.size(); i++)
|
||||
{
|
||||
cv::Point3f V0 = mesh->getVertex(triangles_list[i][0]);
|
||||
cv::Point3f V1 = mesh->getVertex(triangles_list[i][1]);
|
||||
cv::Point3f V2 = mesh->getVertex(triangles_list[i][2]);
|
||||
|
||||
Triangle T(i, V0, V1, V2);
|
||||
|
||||
double out;
|
||||
if(this->intersect_MollerTrumbore(R, T, &out))
|
||||
{
|
||||
cv::Point3f tmp_pt = R.getP0() + out*R.getP1(); // P = O + t*D
|
||||
intersections_list.push_back(tmp_pt);
|
||||
}
|
||||
}
|
||||
|
||||
// If there are intersection, find the nearest one
|
||||
if (!intersections_list.empty())
|
||||
{
|
||||
point3d = get_nearest_3D_point(intersections_list, R.getP0());
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Möller–Trumbore intersection algorithm
|
||||
bool PnPProblem::intersect_MollerTrumbore(Ray &Ray, Triangle &Triangle, double *out)
|
||||
{
|
||||
const double EPSILON = 0.000001;
|
||||
|
||||
cv::Point3f e1, e2;
|
||||
cv::Point3f P, Q, T;
|
||||
double det, inv_det, u, v;
|
||||
double t;
|
||||
|
||||
cv::Point3f V1 = Triangle.getV0(); // Triangle vertices
|
||||
cv::Point3f V2 = Triangle.getV1();
|
||||
cv::Point3f V3 = Triangle.getV2();
|
||||
|
||||
cv::Point3f O = Ray.getP0(); // Ray origin
|
||||
cv::Point3f D = Ray.getP1(); // Ray direction
|
||||
|
||||
//Find vectors for two edges sharing V1
|
||||
e1 = SUB(V2, V1);
|
||||
e2 = SUB(V3, V1);
|
||||
|
||||
// Begin calculation determinant - also used to calculate U parameter
|
||||
P = CROSS(D, e2);
|
||||
|
||||
// If determinant is near zero, ray lie in plane of triangle
|
||||
det = DOT(e1, P);
|
||||
|
||||
//NOT CULLING
|
||||
if(det > -EPSILON && det < EPSILON) return false;
|
||||
inv_det = 1.f / det;
|
||||
|
||||
//calculate distance from V1 to ray origin
|
||||
T = SUB(O, V1);
|
||||
|
||||
//Calculate u parameter and test bound
|
||||
u = DOT(T, P) * inv_det;
|
||||
|
||||
//The intersection lies outside of the triangle
|
||||
if(u < 0.f || u > 1.f) return false;
|
||||
|
||||
//Prepare to test v parameter
|
||||
Q = CROSS(T, e1);
|
||||
|
||||
//Calculate V parameter and test bound
|
||||
v = DOT(D, Q) * inv_det;
|
||||
|
||||
//The intersection lies outside of the triangle
|
||||
if(v < 0.f || u + v > 1.f) return false;
|
||||
|
||||
t = DOT(e2, Q) * inv_det;
|
||||
|
||||
if(t > EPSILON) { //ray intersection
|
||||
*out = t;
|
||||
return true;
|
||||
}
|
||||
|
||||
// No hit, no win
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user