Code tutorial

This commit is contained in:
edgarriba 2014-07-30 12:56:30 +02:00
parent 9d18f5c458
commit b33a2f24fa

View File

@ -0,0 +1,315 @@
/*
* PnPProblem.cpp
*
* Created on: Mar 28, 2014
* Author: Edgar Riba
*/
#include <iostream>
#include <sstream>
#include "PnPProblem.h"
#include "Mesh.h"
#include <opencv2/calib3d/calib3d.hpp>
/* Functions for MöllerTrumbore intersection algorithm
* */
cv::Point3f CROSS(cv::Point3f v1, cv::Point3f v2)
{
cv::Point3f tmp_p;
tmp_p.x = v1.y*v2.z - v1.z*v2.y;
tmp_p.y = v1.z*v2.x - v1.x*v2.z;
tmp_p.z = v1.x*v2.y - v1.y*v2.x;
return tmp_p;
}
double DOT(cv::Point3f v1, cv::Point3f v2)
{
return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;
}
cv::Point3f SUB(cv::Point3f v1, cv::Point3f v2)
{
cv::Point3f tmp_p;
tmp_p.x = v1.x - v2.x;
tmp_p.y = v1.y - v2.y;
tmp_p.z = v1.z - v2.z;
return tmp_p;
}
/* End functions for MöllerTrumbore intersection algorithm
* */
// Function to get the nearest 3D point to the Ray origin
cv::Point3f get_nearest_3D_point(std::vector<cv::Point3f> &points_list, cv::Point3f origin)
{
cv::Point3f p1 = points_list[0];
cv::Point3f p2 = points_list[1];
double d1 = std::sqrt( std::pow(p1.x-origin.x, 2) + std::pow(p1.y-origin.y, 2) + std::pow(p1.z-origin.z, 2) );
double d2 = std::sqrt( std::pow(p2.x-origin.x, 2) + std::pow(p2.y-origin.y, 2) + std::pow(p2.z-origin.z, 2) );
if(d1 < d2)
{
return p1;
}
else
{
return p2;
}
}
// Custom constructor given the intrinsic camera parameters
PnPProblem::PnPProblem(const double params[])
{
_A_matrix = cv::Mat::zeros(3, 3, CV_64FC1); // intrinsic camera parameters
_A_matrix.at<double>(0, 0) = params[0]; // [ fx 0 cx ]
_A_matrix.at<double>(1, 1) = params[1]; // [ 0 fy cy ]
_A_matrix.at<double>(0, 2) = params[2]; // [ 0 0 1 ]
_A_matrix.at<double>(1, 2) = params[3];
_A_matrix.at<double>(2, 2) = 1;
_R_matrix = cv::Mat::zeros(3, 3, CV_64FC1); // rotation matrix
_t_matrix = cv::Mat::zeros(3, 1, CV_64FC1); // translation matrix
_P_matrix = cv::Mat::zeros(3, 4, CV_64FC1); // rotation-translation matrix
}
PnPProblem::~PnPProblem()
{
// TODO Auto-generated destructor stub
}
void PnPProblem::set_P_matrix( const cv::Mat &R_matrix, const cv::Mat &t_matrix)
{
// Rotation-Translation Matrix Definition
_P_matrix.at<double>(0,0) = R_matrix.at<double>(0,0);
_P_matrix.at<double>(0,1) = R_matrix.at<double>(0,1);
_P_matrix.at<double>(0,2) = R_matrix.at<double>(0,2);
_P_matrix.at<double>(1,0) = R_matrix.at<double>(1,0);
_P_matrix.at<double>(1,1) = R_matrix.at<double>(1,1);
_P_matrix.at<double>(1,2) = R_matrix.at<double>(1,2);
_P_matrix.at<double>(2,0) = R_matrix.at<double>(2,0);
_P_matrix.at<double>(2,1) = R_matrix.at<double>(2,1);
_P_matrix.at<double>(0,3) = t_matrix.at<double>(0);
_P_matrix.at<double>(1,3) = t_matrix.at<double>(1);
_P_matrix.at<double>(2,3) = t_matrix.at<double>(2);
}
// Estimate the pose given a list of 2D/3D correspondences and the method to use
bool PnPProblem::estimatePose( const std::vector<cv::Point3f> &list_points3d,
const std::vector<cv::Point2f> &list_points2d,
int flags)
{
cv::Mat distCoeffs = cv::Mat::zeros(4, 1, CV_64FC1);
cv::Mat rvec = cv::Mat::zeros(3, 1, CV_64FC1);
cv::Mat tvec = cv::Mat::zeros(3, 1, CV_64FC1);
bool useExtrinsicGuess = false;
// Pose estimation
bool correspondence = cv::solvePnP( list_points3d, list_points2d, _A_matrix, distCoeffs, rvec, tvec,
useExtrinsicGuess, flags);
// Transforms Rotation Vector to Matrix
Rodrigues(rvec,_R_matrix);
_t_matrix = tvec;
// Set projection matrix
this->set_P_matrix(_R_matrix, _t_matrix);
return correspondence;
}
// Estimate the pose given a list of 2D/3D correspondences with RANSAC and the method to use
void PnPProblem::estimatePoseRANSAC( const std::vector<cv::Point3f> &list_points3d, // list with model 3D coordinates
const std::vector<cv::Point2f> &list_points2d, // list with scene 2D coordinates
int flags, cv::Mat &inliers, int iterationsCount, // PnP method; inliers container
float reprojectionError, float confidence ) // Ransac parameters
{
cv::Mat distCoeffs = cv::Mat::zeros(4, 1, CV_64FC1); // vector of distortion coefficients
cv::Mat rvec = cv::Mat::zeros(3, 1, CV_64FC1); // output rotation vector
cv::Mat tvec = cv::Mat::zeros(3, 1, CV_64FC1); // output translation vector
bool useExtrinsicGuess = false; // if true the function uses the provided rvec and tvec values as
// initial approximations of the rotation and translation vectors
cv::solvePnPRansac( list_points3d, list_points2d, _A_matrix, distCoeffs, rvec, tvec,
useExtrinsicGuess, iterationsCount, reprojectionError, confidence,
inliers, flags );
Rodrigues(rvec,_R_matrix); // converts Rotation Vector to Matrix
_t_matrix = tvec; // set translation matrix
this->set_P_matrix(_R_matrix, _t_matrix); // set rotation-translation matrix
}
// Given the mesh, backproject the 3D points to 2D to verify the pose estimation
std::vector<cv::Point2f> PnPProblem::verify_points(Mesh *mesh)
{
std::vector<cv::Point2f> verified_points_2d;
for( int i = 0; i < mesh->getNumVertices(); i++)
{
cv::Point3f point3d = mesh->getVertex(i);
cv::Point2f point2d = this->backproject3DPoint(point3d);
verified_points_2d.push_back(point2d);
}
return verified_points_2d;
}
// Backproject a 3D point to 2D using the estimated pose parameters
cv::Point2f PnPProblem::backproject3DPoint(const cv::Point3f &point3d)
{
// 3D point vector [x y z 1]'
cv::Mat point3d_vec = cv::Mat(4, 1, CV_64FC1);
point3d_vec.at<double>(0) = point3d.x;
point3d_vec.at<double>(1) = point3d.y;
point3d_vec.at<double>(2) = point3d.z;
point3d_vec.at<double>(3) = 1;
// 2D point vector [u v 1]'
cv::Mat point2d_vec = cv::Mat(4, 1, CV_64FC1);
point2d_vec = _A_matrix * _P_matrix * point3d_vec;
// Normalization of [u v]'
cv::Point2f point2d;
point2d.x = point2d_vec.at<double>(0) / point2d_vec.at<double>(2);
point2d.y = point2d_vec.at<double>(1) / point2d_vec.at<double>(2);
return point2d;
}
// Back project a 2D point to 3D and returns if it's on the object surface
bool PnPProblem::backproject2DPoint(const Mesh *mesh, const cv::Point2f &point2d, cv::Point3f &point3d)
{
// Triangles list of the object mesh
std::vector<std::vector<int> > triangles_list = mesh->getTrianglesList();
double lambda = 8;
double u = point2d.x;
double v = point2d.y;
// Point in vector form
cv::Mat point2d_vec = cv::Mat::ones(3, 1, CV_64F); // 3x1
point2d_vec.at<double>(0) = u * lambda;
point2d_vec.at<double>(1) = v * lambda;
point2d_vec.at<double>(2) = lambda;
// Point in camera coordinates
cv::Mat X_c = _A_matrix.inv() * point2d_vec ; // 3x1
// Point in world coordinates
cv::Mat X_w = _R_matrix.inv() * ( X_c - _t_matrix ); // 3x1
// Center of projection
cv::Mat C_op = cv::Mat(_R_matrix.inv()).mul(-1) * _t_matrix; // 3x1
// Ray direction vector
cv::Mat ray = X_w - C_op; // 3x1
ray = ray / cv::norm(ray); // 3x1
// Set up Ray
Ray R((cv::Point3f)C_op, (cv::Point3f)ray);
// A vector to store the intersections found
std::vector<cv::Point3f> intersections_list;
// Loop for all the triangles and check the intersection
for (unsigned int i = 0; i < triangles_list.size(); i++)
{
cv::Point3f V0 = mesh->getVertex(triangles_list[i][0]);
cv::Point3f V1 = mesh->getVertex(triangles_list[i][1]);
cv::Point3f V2 = mesh->getVertex(triangles_list[i][2]);
Triangle T(i, V0, V1, V2);
double out;
if(this->intersect_MollerTrumbore(R, T, &out))
{
cv::Point3f tmp_pt = R.getP0() + out*R.getP1(); // P = O + t*D
intersections_list.push_back(tmp_pt);
}
}
// If there are intersection, find the nearest one
if (!intersections_list.empty())
{
point3d = get_nearest_3D_point(intersections_list, R.getP0());
return true;
}
else
{
return false;
}
}
// MöllerTrumbore intersection algorithm
bool PnPProblem::intersect_MollerTrumbore(Ray &Ray, Triangle &Triangle, double *out)
{
const double EPSILON = 0.000001;
cv::Point3f e1, e2;
cv::Point3f P, Q, T;
double det, inv_det, u, v;
double t;
cv::Point3f V1 = Triangle.getV0(); // Triangle vertices
cv::Point3f V2 = Triangle.getV1();
cv::Point3f V3 = Triangle.getV2();
cv::Point3f O = Ray.getP0(); // Ray origin
cv::Point3f D = Ray.getP1(); // Ray direction
//Find vectors for two edges sharing V1
e1 = SUB(V2, V1);
e2 = SUB(V3, V1);
// Begin calculation determinant - also used to calculate U parameter
P = CROSS(D, e2);
// If determinant is near zero, ray lie in plane of triangle
det = DOT(e1, P);
//NOT CULLING
if(det > -EPSILON && det < EPSILON) return false;
inv_det = 1.f / det;
//calculate distance from V1 to ray origin
T = SUB(O, V1);
//Calculate u parameter and test bound
u = DOT(T, P) * inv_det;
//The intersection lies outside of the triangle
if(u < 0.f || u > 1.f) return false;
//Prepare to test v parameter
Q = CROSS(T, e1);
//Calculate V parameter and test bound
v = DOT(D, Q) * inv_det;
//The intersection lies outside of the triangle
if(v < 0.f || u + v > 1.f) return false;
t = DOT(e2, Q) * inv_det;
if(t > EPSILON) { //ray intersection
*out = t;
return true;
}
// No hit, no win
return false;
}