Remove ghost removal

This commit is contained in:
Fedor Morozov 2013-09-18 18:15:51 +04:00
parent 89508bf7ab
commit b1af5cc478
2 changed files with 0 additions and 336 deletions

View File

@ -288,63 +288,6 @@ public:
CV_EXPORTS_W Ptr<MergeRobertson> createMergeRobertson(); CV_EXPORTS_W Ptr<MergeRobertson> createMergeRobertson();
class CV_EXPORTS_W Ghostbuster : public Algorithm
{
public:
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times, Mat response) = 0;
};
// "Ghost Detection and Removal in High Dynamic Range Images", Sidibe et al., 2009
class CV_EXPORTS_W GhostbusterOrder : public Ghostbuster
{
public:
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times, Mat response) = 0;
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst) = 0;
CV_WRAP virtual int getUnderexp() = 0;
CV_WRAP virtual void setUnderexp(int value) = 0;
CV_WRAP virtual int getOverexp() = 0;
CV_WRAP virtual void setOverexp(int value) = 0;
};
CV_EXPORTS_W Ptr<GhostbusterOrder> createGhostbusterOrder(int underexp = 20, int overexp = 240);
// "Fast and Robust High Dynamic Range Image Generation with Camera and Object Movement", Grosch, 2006
class CV_EXPORTS_W GhostbusterPredict : public Ghostbuster
{
public:
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times, Mat response) = 0;
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times) = 0;
CV_WRAP virtual int getThreshold() = 0;
CV_WRAP virtual void setThreshold(int value) = 0;
CV_WRAP virtual int getUnderexp() = 0;
CV_WRAP virtual void setUnderexp(int value) = 0;
CV_WRAP virtual int getOverexp() = 0;
CV_WRAP virtual void setOverexp(int value) = 0;
};
CV_EXPORTS_W Ptr<GhostbusterPredict> createGhostbusterPredict(int thresh = 10, int underexp = 20, int overexp = 240);
// "Bitmap Movement Detection: HDR for Dynamic Scenes", Pece, Kautz, 2010
class CV_EXPORTS_W GhostbusterBitmap : public Ghostbuster
{
public:
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times, Mat response) = 0;
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst) = 0;
CV_WRAP virtual int getExclude() = 0;
CV_WRAP virtual void setExclude(int value) = 0;
};
CV_EXPORTS_W Ptr<GhostbusterBitmap> createGhostbusterBitmap(int exclude = 4);
} // cv } // cv
#endif #endif

View File

@ -263,284 +263,5 @@ Ptr<AlignMTB> createAlignMTB(int max_bits, int exclude_range, bool cut)
return new AlignMTBImpl(max_bits, exclude_range, cut); return new AlignMTBImpl(max_bits, exclude_range, cut);
} }
class floatIndexCmp {
public:
floatIndexCmp(std::vector<float> data) :
data(data)
{
}
bool operator() (int i,int j)
{
return data[i] < data[j];
}
protected:
std::vector<float> data;
};
class GhostbusterOrderImpl : public GhostbusterOrder
{
public:
GhostbusterOrderImpl(int underexp, int overexp) :
underexp(underexp),
overexp(overexp),
name("GhostbusterOrder")
{
}
void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times, Mat response)
{
process(src, dst);
}
void process(InputArrayOfArrays src, OutputArray dst)
{
std::vector<Mat> unsorted_images;
src.getMatVector(unsorted_images);
checkImageDimensions(unsorted_images);
std::vector<Mat> images;
sortImages(unsorted_images, images);
int channels = images[0].channels();
dst.create(images[0].size(), CV_8U);
Mat res = Mat::zeros(images[0].size(), CV_8U);
std::vector<Mat> splitted(channels);
split(images[0], splitted);
for(size_t i = 0; i < images.size() - 1; i++) {
std::vector<Mat> next_splitted(channels);
split(images[i + 1], next_splitted);
for(int c = 0; c < channels; c++) {
Mat exposed = (splitted[c] >= underexp) & (splitted[c] <= overexp);
exposed &= (next_splitted[c] >= underexp) & (next_splitted[c] <= overexp);
Mat ghost = (splitted[c] > next_splitted[c]) & exposed;
res |= ghost;
}
splitted = next_splitted;
}
res.copyTo(dst.getMat());
}
int getUnderexp() {return underexp;}
void setUnderexp(int value) {underexp = value;}
int getOverexp() {return overexp;}
void setOverexp(int value) {overexp = value;}
void write(FileStorage& fs) const
{
fs << "name" << name
<< "overexp" << overexp
<< "underexp" << underexp;
}
void read(const FileNode& fn)
{
FileNode n = fn["name"];
CV_Assert(n.isString() && String(n) == name);
overexp = fn["overexp"];
underexp = fn["underexp"];
}
protected:
int overexp, underexp;
String name;
void sortImages(std::vector<Mat>& images, std::vector<Mat>& sorted)
{
std::vector<int>indices(images.size());
std::vector<float>means(images.size());
for(size_t i = 0; i < images.size(); i++) {
indices[i] = i;
means[i] = mean(mean(images[i]))[0];
}
sort(indices.begin(), indices.end(), floatIndexCmp(means));
sorted.resize(images.size());
for(size_t i = 0; i < images.size(); i++) {
sorted[i] = images[indices[i]];
}
}
};
Ptr<GhostbusterOrder> createGhostbusterOrder(int underexp, int overexp)
{
return new GhostbusterOrderImpl(underexp, overexp);
}
class GhostbusterPredictImpl : public GhostbusterPredict
{
public:
GhostbusterPredictImpl(int thresh, int underexp, int overexp) :
thresh(thresh),
underexp(underexp),
overexp(overexp),
name("GhostbusterPredict")
{
}
void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times, Mat response)
{
std::vector<Mat> images;
src.getMatVector(images);
checkImageDimensions(images);
int channels = images[0].channels();
dst.create(images[0].size(), CV_8U);
Mat res = Mat::zeros(images[0].size(), CV_8U);
Mat radiance;
LUT(images[0], response, radiance);
std::vector<Mat> splitted(channels);
split(radiance, splitted);
std::vector<Mat> resp_split(channels);
split(response, resp_split);
for(size_t i = 0; i < images.size() - 1; i++) {
std::vector<Mat> next_splitted(channels);
LUT(images[i + 1], response, radiance);
split(radiance, next_splitted);
for(int c = 0; c < channels; c++) {
Mat predicted = splitted[c] / times[i] * times[i + 1];
Mat low = max(thresh, next_splitted[c]) - thresh;
Mat high = min(255 - thresh, next_splitted[c]) + thresh;
low.convertTo(low, CV_8U);
high.convertTo(high, CV_8U);
LUT(low, resp_split[c], low);
LUT(high, resp_split[c], high);
Mat exposed = (splitted[c] >= underexp) & (splitted[c] <= overexp);
exposed &= (next_splitted[c] >= underexp) & (next_splitted[c] <= overexp);
Mat ghost = (low < predicted) & (predicted < high);
ghost &= exposed;
res |= ghost;
}
splitted = next_splitted;
}
res.copyTo(dst.getMat());
}
virtual void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times)
{
Mat response = linearResponse(3);
response.at<Vec3f>(0) = response.at<Vec3f>(1);
process(src, dst, times, response);
}
CV_WRAP virtual int getThreshold() {return thresh;}
CV_WRAP virtual void setThreshold(int value) {thresh = value;}
int getUnderexp() {return underexp;}
void setUnderexp(int value) {underexp = value;}
int getOverexp() {return overexp;}
void setOverexp(int value) {overexp = value;}
void write(FileStorage& fs) const
{
fs << "name" << name
<< "overexp" << overexp
<< "underexp" << underexp
<< "thresh" << thresh;
}
void read(const FileNode& fn)
{
FileNode n = fn["name"];
CV_Assert(n.isString() && String(n) == name);
overexp = fn["overexp"];
underexp = fn["underexp"];
thresh = fn["thresh"];
}
protected:
int thresh, underexp, overexp;
String name;
};
Ptr<GhostbusterPredict> createGhostbusterPredict(int thresh, int underexp, int overexp)
{
return new GhostbusterPredictImpl(thresh, underexp, overexp);
}
class GhostbusterBitmapImpl : public GhostbusterBitmap
{
public:
GhostbusterBitmapImpl(int exclude) :
exclude(exclude),
name("GhostbusterBitmap")
{
}
void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times, Mat response)
{
process(src, dst);
}
void process(InputArrayOfArrays src, OutputArray dst)
{
std::vector<Mat> images;
src.getMatVector(images);
checkImageDimensions(images);
int channels = images[0].channels();
dst.create(images[0].size(), CV_8U);
Mat res = Mat::zeros(images[0].size(), CV_8U);
Ptr<AlignMTB> MTB = createAlignMTB();
MTB->setExcludeRange(exclude);
for(size_t i = 0; i < images.size(); i++) {
Mat gray;
if(channels == 1) {
gray = images[i];
} else {
cvtColor(images[i], gray, COLOR_RGB2GRAY);
}
Mat tb, eb;
MTB->computeBitmaps(gray, tb, eb);
tb &= eb & 1;
res += tb;
}
res = (res > 0) & (res < images.size());
res.copyTo(dst.getMat());
}
int getExclude() {return exclude;}
void setExclude(int value) {exclude = value;}
void write(FileStorage& fs) const
{
fs << "name" << name
<< "exclude" << exclude;
}
void read(const FileNode& fn)
{
FileNode n = fn["name"];
CV_Assert(n.isString() && String(n) == name);
exclude = fn["exclude"];
}
protected:
int exclude;
String name;
};
Ptr<GhostbusterBitmap> createGhostbusterBitmap(int exclude)
{
return new GhostbusterBitmapImpl(exclude);
}
} }