fixed errors in StereoBeliefPropogation under linux

This commit is contained in:
Vladislav Vinogradov 2010-12-13 13:52:40 +00:00
parent 070d87fb7f
commit b18a3a5f83
2 changed files with 165 additions and 77 deletions

View File

@ -48,7 +48,7 @@
using namespace cv::gpu;
using namespace cv::gpu::device;
namespace cv { namespace gpu { namespace bp
namespace cv { namespace gpu { namespace bp
{
///////////////////////////////////////////////////////////////
/////////////////////// load constants ////////////////////////
@ -66,62 +66,90 @@ namespace cv { namespace gpu { namespace bp
cudaSafeCall( cudaMemcpyToSymbol(cmax_data_term, &max_data_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(cdata_weight, &data_weight, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(cmax_disc_term, &max_disc_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(cdisc_single_jump, &disc_single_jump, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(cdisc_single_jump, &disc_single_jump, sizeof(float)) );
}
///////////////////////////////////////////////////////////////
////////////////////////// comp data //////////////////////////
///////////////////////////////////////////////////////////////
__device__ float pixDiff(uchar l, uchar r)
template <int cn> struct PixDiff;
template <> struct PixDiff<1>
{
return abs((int)l - r);
}
__device__ float pixDiff(const uchar3& l, const uchar3& r)
__device__ PixDiff(const uchar* ls)
{
l = *ls;
}
__device__ float operator()(const uchar* rs) const
{
return abs((int)l - *rs);
}
uchar l;
};
template <> struct PixDiff<3>
{
const float tr = 0.299f;
const float tg = 0.587f;
const float tb = 0.114f;
__device__ PixDiff(const uchar* ls)
{
l = *((uchar3*)ls);
}
__device__ float operator()(const uchar* rs) const
{
const float tr = 0.299f;
const float tg = 0.587f;
const float tb = 0.114f;
float val = tb * abs((int)l.x - r.x);
val += tg * abs((int)l.y - r.y);
val += tr * abs((int)l.z - r.z);
return val;
}
__device__ float pixDiff(const uchar4& l, const uchar4& r)
float val = tb * abs((int)l.x - rs[0]);
val += tg * abs((int)l.y - rs[1]);
val += tr * abs((int)l.z - rs[2]);
return val;
}
uchar3 l;
};
template <> struct PixDiff<4>
{
const float tr = 0.299f;
const float tg = 0.587f;
const float tb = 0.114f;
__device__ PixDiff(const uchar* ls)
{
l = *((uchar4*)ls);
}
__device__ float operator()(const uchar* rs) const
{
const float tr = 0.299f;
const float tg = 0.587f;
const float tb = 0.114f;
float val = tb * abs((int)l.x - r.x);
val += tg * abs((int)l.y - r.y);
val += tr * abs((int)l.z - r.z);
return val;
}
uchar4 r = *((uchar4*)rs);
template <typename T, typename D>
__global__ void comp_data(const DevMem2D_<T> left, const PtrStep_<T> right, PtrElemStep_<D> data)
float val = tb * abs((int)l.x - r.x);
val += tg * abs((int)l.y - r.y);
val += tr * abs((int)l.z - r.z);
return val;
}
uchar4 l;
};
template <int cn, typename D>
__global__ void comp_data(const DevMem2D left, const PtrStep right, PtrElemStep_<D> data)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y > 0 && y < left.rows - 1 && x > 0 && x < left.cols - 1)
{
const T l = left.ptr(y)[x];
const T* rs = right.ptr(y) + x;
const uchar* ls = left.ptr(y) + x * cn;
const PixDiff<cn> pixDiff(ls);
const uchar* rs = right.ptr(y) + x * cn;
D* ds = data.ptr(y) + x;
const size_t disp_step = data.step * left.rows;
for (int disp = 0; disp < cndisp; disp++)
for (int disp = 0; disp < cndisp; disp++)
{
if (x - disp >= 1)
{
float val = pixDiff(l, rs[-disp]);
float val = pixDiff(rs - disp * cn);
ds[disp * disp_step] = saturate_cast<D>(fmin(cdata_weight * val, cdata_weight * cmax_data_term));
}
else
@ -133,28 +161,88 @@ namespace cv { namespace gpu { namespace bp
}
template<typename T, typename D>
void comp_data_gpu(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream)
void comp_data_gpu(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream);
template <> void comp_data_gpu<uchar, short>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(left.cols, threads.x);
grid.y = divUp(left.rows, threads.y);
comp_data<T, D><<<grid, threads, 0, stream>>>((DevMem2D_<T>)left, (DevMem2D_<T>)right, (DevMem2D_<D>)data);
comp_data<1, short><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<short>)data);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
template <> void comp_data_gpu<uchar, float>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(left.cols, threads.x);
grid.y = divUp(left.rows, threads.y);
comp_data<1, float><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<float>)data);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
template void comp_data_gpu<uchar, short>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream);
template void comp_data_gpu<uchar, float>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream);
template void comp_data_gpu<uchar3, short>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream);
template void comp_data_gpu<uchar3, float>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream);
template void comp_data_gpu<uchar4, short>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream);
template void comp_data_gpu<uchar4, float>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream);
template <> void comp_data_gpu<uchar3, short>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(left.cols, threads.x);
grid.y = divUp(left.rows, threads.y);
comp_data<3, short><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<short>)data);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
template <> void comp_data_gpu<uchar3, float>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(left.cols, threads.x);
grid.y = divUp(left.rows, threads.y);
comp_data<3, float><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<float>)data);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
template <> void comp_data_gpu<uchar4, short>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(left.cols, threads.x);
grid.y = divUp(left.rows, threads.y);
comp_data<4, short><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<short>)data);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
template <> void comp_data_gpu<uchar4, float>(const DevMem2D& left, const DevMem2D& right, const DevMem2D& data, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(left.cols, threads.x);
grid.y = divUp(left.rows, threads.y);
comp_data<4, float><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<float>)data);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
///////////////////////////////////////////////////////////////
//////////////////////// data step down ///////////////////////
@ -190,7 +278,7 @@ namespace cv { namespace gpu { namespace bp
grid.y = divUp(dst_rows, threads.y);
data_step_down<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)src, (DevMem2D_<T>)dst);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
@ -206,7 +294,7 @@ namespace cv { namespace gpu { namespace bp
__global__ void level_up_message(int dst_cols, int dst_rows, int src_rows, const PtrElemStep_<T> src, PtrElemStep_<T> dst)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < dst_cols && y < dst_rows)
{
@ -216,7 +304,7 @@ namespace cv { namespace gpu { namespace bp
T* dstr = dst.ptr(y ) + x;
const T* srcr = src.ptr(y/2) + x/2;
for (int d = 0; d < cndisp; ++d)
for (int d = 0; d < cndisp; ++d)
dstr[d * dst_disp_step] = srcr[d * src_disp_step];
}
}
@ -236,7 +324,7 @@ namespace cv { namespace gpu { namespace bp
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mds[src_idx], (DevMem2D_<T>)mds[dst_idx]);
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mls[src_idx], (DevMem2D_<T>)mls[dst_idx]);
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mrs[src_idx], (DevMem2D_<T>)mrs[dst_idx]);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
@ -253,7 +341,7 @@ namespace cv { namespace gpu { namespace bp
{
float prev = dst[0];
float cur;
for (int disp = 1; disp < cndisp; ++disp)
for (int disp = 1; disp < cndisp; ++disp)
{
prev += cdisc_single_jump;
cur = dst[step * disp];
@ -266,7 +354,7 @@ namespace cv { namespace gpu { namespace bp
}
prev = dst[(cndisp - 1) * step];
for (int disp = cndisp - 2; disp >= 0; disp--)
for (int disp = cndisp - 2; disp >= 0; disp--)
{
prev += cdisc_single_jump;
cur = dst[step * disp];
@ -275,7 +363,7 @@ namespace cv { namespace gpu { namespace bp
cur = prev;
dst[step * disp] = saturate_cast<T>(prev);
}
prev = cur;
prev = cur;
}
}
@ -311,7 +399,7 @@ namespace cv { namespace gpu { namespace bp
dst[msg_disp_step * i] = saturate_cast<T>(minimum);
}
sum += dst_reg;
}
}
sum /= cndisp;
for(int i = 0; i < cndisp; ++i)
@ -338,12 +426,12 @@ namespace cv { namespace gpu { namespace bp
message(us + u.step, ls + 1, rs - 1, dt, us, msg_disp_step, data_disp_step);
message(ds - u.step, ls + 1, rs - 1, dt, ds, msg_disp_step, data_disp_step);
message(us + u.step, ds - u.step, rs - 1, dt, rs, msg_disp_step, data_disp_step);
message(us + u.step, ds - u.step, ls + 1, dt, ls, msg_disp_step, data_disp_step);
message(us + u.step, ds - u.step, ls + 1, dt, ls, msg_disp_step, data_disp_step);
}
}
template <typename T>
void calc_all_iterations_gpu(int cols, int rows, int iters, const DevMem2D& u, const DevMem2D& d,
void calc_all_iterations_gpu(int cols, int rows, int iters, const DevMem2D& u, const DevMem2D& d,
const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
@ -355,7 +443,7 @@ namespace cv { namespace gpu { namespace bp
for(int t = 0; t < iters; ++t)
{
one_iteration<T><<<grid, threads, 0, stream>>>(t, (DevMem2D_<T>)u, (T*)d.data, (T*)l.data, (T*)r.data, (DevMem2D_<T>)data, cols, rows);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
@ -369,9 +457,9 @@ namespace cv { namespace gpu { namespace bp
///////////////////////////////////////////////////////////////
template <typename T>
__global__ void output(const PtrElemStep_<T> u, const T* d, const T* l, const T* r, const T* data,
DevMem2D_<short> disp)
{
__global__ void output(const PtrElemStep_<T> u, const T* d, const T* l, const T* r, const T* data,
DevMem2D_<short> disp)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
@ -387,7 +475,7 @@ namespace cv { namespace gpu { namespace bp
int best = 0;
float best_val = numeric_limits_gpu<float>::max();
for (int d = 0; d < cndisp; ++d)
for (int d = 0; d < cndisp; ++d)
{
float val = us[d * disp_step];
val += ds[d * disp_step];
@ -395,7 +483,7 @@ namespace cv { namespace gpu { namespace bp
val += rs[d * disp_step];
val += dt[d * disp_step];
if (val < best_val)
if (val < best_val)
{
best_val = val;
best = d;
@ -407,7 +495,7 @@ namespace cv { namespace gpu { namespace bp
}
template <typename T>
void output_gpu(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data,
void output_gpu(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data,
const DevMem2D_<short>& disp, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
@ -424,4 +512,4 @@ namespace cv { namespace gpu { namespace bp
template void output_gpu<short>(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, const DevMem2D_<short>& disp, cudaStream_t stream);
template void output_gpu<float>(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, const DevMem2D_<short>& disp, cudaStream_t stream);
}}}
}}}

View File

@ -47,7 +47,7 @@ struct CV_GpuStereoBPTest : public CvTest
{
CV_GpuStereoBPTest() : CvTest( "GPU-StereoBP", "StereoBP" ){}
~CV_GpuStereoBPTest() {}
void run(int )
{
cv::Mat img_l = cv::imread(std::string(ts->get_data_path()) + "stereobp/aloe-L.png");
@ -74,20 +74,20 @@ struct CV_GpuStereoBPTest : public CvTest
disp.convertTo(disp, img_template.type());
double norm = cv::norm(disp, img_template, cv::NORM_INF);
if (norm >= 0.5)
{
ts->printf(CvTS::LOG, "\nStereoBP norm = %f\n", norm);
ts->set_failed_test_info(CvTS::FAIL_GENERIC);
return;
}
}
catch(const cv::Exception& e)
{
if (!check_and_treat_gpu_exception(e, ts))
throw;
return;
}
double norm = cv::norm(disp, img_template, cv::NORM_INF);
if (norm >= 0.5)
{
ts->printf(CvTS::LOG, "\nStereoBP norm = %f\n", norm);
ts->set_failed_test_info(CvTS::FAIL_GENERIC);
return;
}
}
catch(const cv::Exception& e)
{
if (!check_and_treat_gpu_exception(e, ts))
throw;
return;
}
ts->set_failed_test_info(CvTS::OK);
}