renmaed gpu module -> cuda
This commit is contained in:
220
modules/cuda/include/opencv2/cuda.hpp
Normal file
220
modules/cuda/include/opencv2/cuda.hpp
Normal file
@@ -0,0 +1,220 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_CUDA_HPP__
|
||||
#define __OPENCV_CUDA_HPP__
|
||||
|
||||
#ifndef __cplusplus
|
||||
# error cuda.hpp header must be compiled as C++
|
||||
#endif
|
||||
|
||||
#include "opencv2/core/cuda.hpp"
|
||||
|
||||
namespace cv { namespace cuda {
|
||||
|
||||
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
|
||||
|
||||
struct CV_EXPORTS HOGConfidence
|
||||
{
|
||||
double scale;
|
||||
std::vector<Point> locations;
|
||||
std::vector<double> confidences;
|
||||
std::vector<double> part_scores[4];
|
||||
};
|
||||
|
||||
struct CV_EXPORTS HOGDescriptor
|
||||
{
|
||||
enum { DEFAULT_WIN_SIGMA = -1 };
|
||||
enum { DEFAULT_NLEVELS = 64 };
|
||||
enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
|
||||
|
||||
HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
|
||||
Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
|
||||
int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
|
||||
double threshold_L2hys=0.2, bool gamma_correction=true,
|
||||
int nlevels=DEFAULT_NLEVELS);
|
||||
|
||||
size_t getDescriptorSize() const;
|
||||
size_t getBlockHistogramSize() const;
|
||||
|
||||
void setSVMDetector(const std::vector<float>& detector);
|
||||
|
||||
static std::vector<float> getDefaultPeopleDetector();
|
||||
static std::vector<float> getPeopleDetector48x96();
|
||||
static std::vector<float> getPeopleDetector64x128();
|
||||
|
||||
void detect(const GpuMat& img, std::vector<Point>& found_locations,
|
||||
double hit_threshold=0, Size win_stride=Size(),
|
||||
Size padding=Size());
|
||||
|
||||
void detectMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
||||
double hit_threshold=0, Size win_stride=Size(),
|
||||
Size padding=Size(), double scale0=1.05,
|
||||
int group_threshold=2);
|
||||
|
||||
void computeConfidence(const GpuMat& img, std::vector<Point>& hits, double hit_threshold,
|
||||
Size win_stride, Size padding, std::vector<Point>& locations, std::vector<double>& confidences);
|
||||
|
||||
void computeConfidenceMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
||||
double hit_threshold, Size win_stride, Size padding,
|
||||
std::vector<HOGConfidence> &conf_out, int group_threshold);
|
||||
|
||||
void getDescriptors(const GpuMat& img, Size win_stride,
|
||||
GpuMat& descriptors,
|
||||
int descr_format=DESCR_FORMAT_COL_BY_COL);
|
||||
|
||||
Size win_size;
|
||||
Size block_size;
|
||||
Size block_stride;
|
||||
Size cell_size;
|
||||
int nbins;
|
||||
double win_sigma;
|
||||
double threshold_L2hys;
|
||||
bool gamma_correction;
|
||||
int nlevels;
|
||||
|
||||
protected:
|
||||
void computeBlockHistograms(const GpuMat& img);
|
||||
void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);
|
||||
|
||||
double getWinSigma() const;
|
||||
bool checkDetectorSize() const;
|
||||
|
||||
static int numPartsWithin(int size, int part_size, int stride);
|
||||
static Size numPartsWithin(Size size, Size part_size, Size stride);
|
||||
|
||||
// Coefficients of the separating plane
|
||||
float free_coef;
|
||||
GpuMat detector;
|
||||
|
||||
// Results of the last classification step
|
||||
GpuMat labels, labels_buf;
|
||||
Mat labels_host;
|
||||
|
||||
// Results of the last histogram evaluation step
|
||||
GpuMat block_hists, block_hists_buf;
|
||||
|
||||
// Gradients conputation results
|
||||
GpuMat grad, qangle, grad_buf, qangle_buf;
|
||||
|
||||
// returns subbuffer with required size, reallocates buffer if nessesary.
|
||||
static GpuMat getBuffer(const Size& sz, int type, GpuMat& buf);
|
||||
static GpuMat getBuffer(int rows, int cols, int type, GpuMat& buf);
|
||||
|
||||
std::vector<GpuMat> image_scales;
|
||||
};
|
||||
|
||||
//////////////////////////// CascadeClassifier ////////////////////////////
|
||||
|
||||
// The cascade classifier class for object detection: supports old haar and new lbp xlm formats and nvbin for haar cascades olny.
|
||||
class CV_EXPORTS CascadeClassifier_GPU
|
||||
{
|
||||
public:
|
||||
CascadeClassifier_GPU();
|
||||
CascadeClassifier_GPU(const String& filename);
|
||||
~CascadeClassifier_GPU();
|
||||
|
||||
bool empty() const;
|
||||
bool load(const String& filename);
|
||||
void release();
|
||||
|
||||
/* returns number of detected objects */
|
||||
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size());
|
||||
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4);
|
||||
|
||||
bool findLargestObject;
|
||||
bool visualizeInPlace;
|
||||
|
||||
Size getClassifierSize() const;
|
||||
|
||||
private:
|
||||
struct CascadeClassifierImpl;
|
||||
CascadeClassifierImpl* impl;
|
||||
struct HaarCascade;
|
||||
struct LbpCascade;
|
||||
friend class CascadeClassifier_GPU_LBP;
|
||||
};
|
||||
|
||||
//////////////////////////// Labeling ////////////////////////////
|
||||
|
||||
//!performs labeling via graph cuts of a 2D regular 4-connected graph.
|
||||
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels,
|
||||
GpuMat& buf, Stream& stream = Stream::Null());
|
||||
|
||||
//!performs labeling via graph cuts of a 2D regular 8-connected graph.
|
||||
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& topLeft, GpuMat& topRight,
|
||||
GpuMat& bottom, GpuMat& bottomLeft, GpuMat& bottomRight,
|
||||
GpuMat& labels,
|
||||
GpuMat& buf, Stream& stream = Stream::Null());
|
||||
|
||||
//! compute mask for Generalized Flood fill componetns labeling.
|
||||
CV_EXPORTS void connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& stream = Stream::Null());
|
||||
|
||||
//! performs connected componnents labeling.
|
||||
CV_EXPORTS void labelComponents(const GpuMat& mask, GpuMat& components, int flags = 0, Stream& stream = Stream::Null());
|
||||
|
||||
//////////////////////////// Calib3d ////////////////////////////
|
||||
|
||||
CV_EXPORTS void transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
|
||||
GpuMat& dst, Stream& stream = Stream::Null());
|
||||
|
||||
CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
|
||||
const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst,
|
||||
Stream& stream = Stream::Null());
|
||||
|
||||
CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat,
|
||||
const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false,
|
||||
int num_iters=100, float max_dist=8.0, int min_inlier_count=100,
|
||||
std::vector<int>* inliers=NULL);
|
||||
|
||||
//////////////////////////// VStab ////////////////////////////
|
||||
|
||||
//! removes points (CV_32FC2, single row matrix) with zero mask value
|
||||
CV_EXPORTS void compactPoints(GpuMat &points0, GpuMat &points1, const GpuMat &mask);
|
||||
|
||||
CV_EXPORTS void calcWobbleSuppressionMaps(
|
||||
int left, int idx, int right, Size size, const Mat &ml, const Mat &mr,
|
||||
GpuMat &mapx, GpuMat &mapy);
|
||||
|
||||
}} // namespace cv { namespace cuda {
|
||||
|
||||
#endif /* __OPENCV_CUDA_HPP__ */
|
Reference in New Issue
Block a user