fixes for gpu module:

- fixed printCudaDeviceInfo for new CC
- fixed some compilation errors and warnings
- removed unset command from CMake script
- removed unused std imports
This commit is contained in:
Vladislav Vinogradov
2013-01-23 13:59:14 +04:00
parent b7e6b5af1b
commit ae6266e101
32 changed files with 232 additions and 144 deletions

View File

@@ -268,14 +268,14 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat& trainIdx, cons
const float* distance_ptr = distance.ptr<float>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr)
{
int _trainIdx = *trainIdx_ptr;
int train_idx = *trainIdx_ptr;
if (_trainIdx == -1)
if (train_idx == -1)
continue;
float _distance = *distance_ptr;
float distance_local = *distance_ptr;
DMatch m(queryIdx, _trainIdx, 0, _distance);
DMatch m(queryIdx, train_idx, 0, distance_local);
matches.push_back(m);
}
@@ -413,16 +413,16 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat& trainIdx, cons
const float* distance_ptr = distance.ptr<float>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
int _trainIdx = *trainIdx_ptr;
if (trainIdx == -1)
if (_trainIdx == -1)
continue;
int imgIdx = *imgIdx_ptr;
int _imgIdx = *imgIdx_ptr;
float distance = *distance_ptr;
float _distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, imgIdx, distance);
DMatch m(queryIdx, _trainIdx, _imgIdx, _distance);
matches.push_back(m);
}
@@ -548,13 +548,13 @@ void cv::gpu::BruteForceMatcher_GPU_base::knnMatchConvert(const Mat& trainIdx, c
for (int i = 0; i < k; ++i, ++trainIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
int _trainIdx = *trainIdx_ptr;
if (trainIdx != -1)
if (_trainIdx != -1)
{
float distance = *distance_ptr;
float _distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, 0, distance);
DMatch m(queryIdx, _trainIdx, 0, _distance);
curMatches.push_back(m);
}
@@ -667,15 +667,15 @@ void cv::gpu::BruteForceMatcher_GPU_base::knnMatch2Convert(const Mat& trainIdx,
for (int i = 0; i < 2; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
int _trainIdx = *trainIdx_ptr;
if (trainIdx != -1)
if (_trainIdx != -1)
{
int imgIdx = *imgIdx_ptr;
int _imgIdx = *imgIdx_ptr;
float distance = *distance_ptr;
float _distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, imgIdx, distance);
DMatch m(queryIdx, _trainIdx, _imgIdx, _distance);
curMatches.push_back(m);
}
@@ -852,25 +852,25 @@ void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchConvert(const Mat& trainIdx
const int* trainIdx_ptr = trainIdx.ptr<int>(queryIdx);
const float* distance_ptr = distance.ptr<float>(queryIdx);
const int nMatches = std::min(nMatches_ptr[queryIdx], trainIdx.cols);
const int nMatched = std::min(nMatches_ptr[queryIdx], trainIdx.cols);
if (nMatches == 0)
if (nMatched == 0)
{
if (!compactResult)
matches.push_back(vector<DMatch>());
continue;
}
matches.push_back(vector<DMatch>(nMatches));
matches.push_back(vector<DMatch>(nMatched));
vector<DMatch>& curMatches = matches.back();
for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++distance_ptr)
for (int i = 0; i < nMatched; ++i, ++trainIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
int _trainIdx = *trainIdx_ptr;
float distance = *distance_ptr;
float _distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, 0, distance);
DMatch m(queryIdx, _trainIdx, 0, _distance);
curMatches[i] = m;
}
@@ -990,9 +990,9 @@ void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchConvert(const Mat& trainIdx
const int* imgIdx_ptr = imgIdx.ptr<int>(queryIdx);
const float* distance_ptr = distance.ptr<float>(queryIdx);
const int nMatches = std::min(nMatches_ptr[queryIdx], trainIdx.cols);
const int nMatched = std::min(nMatches_ptr[queryIdx], trainIdx.cols);
if (nMatches == 0)
if (nMatched == 0)
{
if (!compactResult)
matches.push_back(vector<DMatch>());
@@ -1001,9 +1001,9 @@ void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchConvert(const Mat& trainIdx
matches.push_back(vector<DMatch>());
vector<DMatch>& curMatches = matches.back();
curMatches.reserve(nMatches);
curMatches.reserve(nMatched);
for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
for (int i = 0; i < nMatched; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
{
int _trainIdx = *trainIdx_ptr;
int _imgIdx = *imgIdx_ptr;

View File

@@ -622,7 +622,7 @@ private:
}
// copy data structures on gpu
stage_mat.upload(cv::Mat(1, stages.size() * sizeof(Stage), CV_8UC1, (uchar*)&(stages[0]) ));
stage_mat.upload(cv::Mat(1, (int) (stages.size() * sizeof(Stage)), CV_8UC1, (uchar*)&(stages[0]) ));
trees_mat.upload(cv::Mat(cl_trees).reshape(1,1));
nodes_mat.upload(cv::Mat(cl_nodes).reshape(1,1));
leaves_mat.upload(cv::Mat(cl_leaves).reshape(1,1));

View File

@@ -497,6 +497,7 @@ namespace cv { namespace gpu { namespace device
void labelComponents(const PtrStepSzb& edges, PtrStepSzi comps, int flags, cudaStream_t stream)
{
(void) flags;
dim3 block(CTA_SIZE_X, CTA_SIZE_Y);
dim3 grid(divUp(edges.cols, TILE_COLS), divUp(edges.rows, TILE_ROWS));
@@ -529,4 +530,4 @@ namespace cv { namespace gpu { namespace device
}
} } }
#endif /* CUDA_DISABLER */
#endif /* CUDA_DISABLER */

View File

@@ -47,6 +47,7 @@
#if !defined CUDA_DISABLER
#include <thrust/device_ptr.h>
#include <thrust/sort.h>
#include "opencv2/gpu/device/common.hpp"
@@ -148,4 +149,4 @@ namespace cv { namespace gpu { namespace device
}}}
#endif /* CUDA_DISABLER */
#endif /* CUDA_DISABLER */

View File

@@ -42,7 +42,9 @@
#if !defined CUDA_DISABLER
#include <thrust/device_ptr.h>
#include <thrust/sort.h>
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/emulation.hpp"
#include "opencv2/gpu/device/vec_math.hpp"
@@ -1509,4 +1511,4 @@ namespace cv { namespace gpu { namespace device
}}}
#endif /* CUDA_DISABLER */
#endif /* CUDA_DISABLER */

View File

@@ -295,7 +295,7 @@ namespace cv { namespace gpu { namespace device
int grid = divUp(workAmount, block);
cudaFuncSetCacheConfig(lbp_cascade, cudaFuncCachePreferL1);
Cascade cascade((Stage*)mstages.ptr(), nstages, (ClNode*)mnodes.ptr(), mleaves.ptr(), msubsets.ptr(), (uchar4*)mfeatures.ptr(), subsetSize);
lbp_cascade<<<grid, block>>>(cascade, frameW, frameH, windowW, windowH, initialScale, factor, workAmount, integral.ptr(), integral.step / sizeof(int), objects, classified);
lbp_cascade<<<grid, block>>>(cascade, frameW, frameH, windowW, windowH, initialScale, factor, workAmount, integral.ptr(), (int)integral.step / sizeof(int), objects, classified);
}
}
}}}

View File

@@ -76,7 +76,7 @@ namespace cv { namespace gpu { namespace device
static __device__ __forceinline__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float scale)
{
float angle = ::atan2f(y_data, x_data);
angle += (angle < 0) * 2.0 * CV_PI;
angle += (angle < 0) * 2.0f * CV_PI_F;
dst[y * dst_step + x] = scale * angle;
}
};
@@ -140,7 +140,7 @@ namespace cv { namespace gpu { namespace device
grid.x = divUp(x.cols, threads.x);
grid.y = divUp(x.rows, threads.y);
const float scale = angleInDegrees ? (float)(180.0f / CV_PI) : 1.f;
const float scale = angleInDegrees ? (180.0f / CV_PI_F) : 1.f;
cartToPolar<Mag, Angle><<<grid, threads, 0, stream>>>(
x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(),
@@ -190,7 +190,7 @@ namespace cv { namespace gpu { namespace device
grid.x = divUp(mag.cols, threads.x);
grid.y = divUp(mag.rows, threads.y);
const float scale = angleInDegrees ? (float)(CV_PI / 180.0f) : 1.0f;
const float scale = angleInDegrees ? (CV_PI_F / 180.0f) : 1.0f;
polarToCart<Mag><<<grid, threads, 0, stream>>>(mag.data, mag.step/mag.elemSize(),
angle.data, angle.step/angle.elemSize(), scale, x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(), mag.cols, mag.rows);
@@ -214,4 +214,4 @@ namespace cv { namespace gpu { namespace device
} // namespace mathfunc
}}} // namespace cv { namespace gpu { namespace device
#endif /* CUDA_DISABLER */
#endif /* CUDA_DISABLER */

View File

@@ -164,40 +164,40 @@ namespace cv { namespace gpu { namespace device
r = ::fmin(r, 2.5f);
v[1].x = arrow_x + r * ::cosf(theta - CV_PI / 2.0f);
v[1].y = arrow_y + r * ::sinf(theta - CV_PI / 2.0f);
v[1].x = arrow_x + r * ::cosf(theta - CV_PI_F / 2.0f);
v[1].y = arrow_y + r * ::sinf(theta - CV_PI_F / 2.0f);
v[4].x = arrow_x + r * ::cosf(theta + CV_PI / 2.0f);
v[4].y = arrow_y + r * ::sinf(theta + CV_PI / 2.0f);
v[4].x = arrow_x + r * ::cosf(theta + CV_PI_F / 2.0f);
v[4].y = arrow_y + r * ::sinf(theta + CV_PI_F / 2.0f);
int indx = (y * u_avg.cols + x) * NUM_VERTS_PER_ARROW * 3;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
vertex_data[indx++] = v[0].x * xscale;
vertex_data[indx++] = v[0].y * yscale;
vertex_data[indx++] = v[0].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
vertex_data[indx++] = v[1].x * xscale;
vertex_data[indx++] = v[1].y * yscale;
vertex_data[indx++] = v[1].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
vertex_data[indx++] = v[2].x * xscale;
vertex_data[indx++] = v[2].y * yscale;
vertex_data[indx++] = v[2].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
vertex_data[indx++] = v[3].x * xscale;
vertex_data[indx++] = v[3].y * yscale;
vertex_data[indx++] = v[3].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
vertex_data[indx++] = v[4].x * xscale;
vertex_data[indx++] = v[4].y * yscale;
vertex_data[indx++] = v[4].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
vertex_data[indx++] = v[5].x * xscale;
vertex_data[indx++] = v[5].y * yscale;
vertex_data[indx++] = v[5].z;
@@ -217,4 +217,4 @@ namespace cv { namespace gpu { namespace device
}
}}}
#endif /* CUDA_DISABLER */
#endif /* CUDA_DISABLER */

View File

@@ -42,7 +42,6 @@
#if !defined CUDA_DISABLER
#include <stdio.h>
#include "internal_shared.hpp"
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/border_interpolate.hpp"
@@ -57,8 +56,6 @@
#define BORDER_SIZE 5
#define MAX_KSIZE_HALF 100
using namespace std;
namespace cv { namespace gpu { namespace device { namespace optflow_farneback
{
__constant__ float c_g[8];

View File

@@ -267,7 +267,7 @@ namespace cv { namespace gpu { namespace device
}
__device__ __forceinline__ float4 abs_(const float4& a)
{
return fabs(a);
return abs(a);
}
template <int cn, int PATCH_X, int PATCH_Y, bool calcErr>
@@ -681,4 +681,4 @@ namespace cv { namespace gpu { namespace device
}
}}}
#endif /* CUDA_DISABLER */
#endif /* CUDA_DISABLER */

View File

@@ -508,4 +508,4 @@ namespace cv { namespace gpu { namespace device
}}} // namespace cv { namespace gpu { namespace device
#endif /* CUDA_DISABLER */
#endif /* CUDA_DISABLER */

View File

@@ -454,7 +454,7 @@ namespace cv { namespace gpu { namespace device
grid.x = divUp(cols, threads.x << 1);
grid.y = divUp(rows, threads.y);
int elem_step = u.step/sizeof(T);
int elem_step = (int)(u.step / sizeof(T));
for(int t = 0; t < iters; ++t)
{

View File

@@ -638,7 +638,7 @@ namespace cv { namespace gpu { namespace device
kp_dir *= 180.0f / CV_PI_F;
kp_dir = 360.0f - kp_dir;
if (abs(kp_dir - 360.f) < FLT_EPSILON)
if (::fabsf(kp_dir - 360.f) < FLT_EPSILON)
kp_dir = 0.f;
featureDir[blockIdx.x] = kp_dir;
@@ -1003,4 +1003,4 @@ namespace cv { namespace gpu { namespace device
}}} // namespace cv { namespace gpu { namespace device
#endif /* CUDA_DISABLER */
#endif /* CUDA_DISABLER */

View File

@@ -85,7 +85,7 @@ namespace cv
namespace device
{
using pcl::gpu::TextureBinder;
using cv::gpu::TextureBinder;
}
}

View File

@@ -125,9 +125,6 @@ int cv::gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat& img, const GpuMat& ma
CV_Assert(img.type() == CV_8UC1);
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size()));
if (!TargetArchs::builtWith(GLOBAL_ATOMICS) || !DeviceInfo().supports(GLOBAL_ATOMICS))
CV_Error(CV_StsNotImplemented, "The device doesn't support global atomics");
int maxKeypoints = static_cast<int>(keypointsRatio * img.size().area());
ensureSizeIsEnough(1, maxKeypoints, CV_16SC2, kpLoc_);
@@ -148,9 +145,6 @@ int cv::gpu::FAST_GPU::getKeyPoints(GpuMat& keypoints)
{
using namespace cv::gpu::device::fast;
if (!TargetArchs::builtWith(GLOBAL_ATOMICS) || !DeviceInfo().supports(GLOBAL_ATOMICS))
CV_Error(CV_StsNotImplemented, "The device doesn't support global atomics");
if (count_ == 0)
return 0;

View File

@@ -68,9 +68,6 @@ void cv::gpu::GoodFeaturesToTrackDetector_GPU::operator ()(const GpuMat& image,
CV_Assert(qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0);
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()));
if (!TargetArchs::builtWith(GLOBAL_ATOMICS) || !DeviceInfo().supports(GLOBAL_ATOMICS))
CV_Error(CV_StsNotImplemented, "The device doesn't support global atomics");
ensureSizeIsEnough(image.size(), CV_32F, eig_);
if (useHarrisDetector)

View File

@@ -45,8 +45,6 @@
#include <vector>
#include "NCV.hpp"
using namespace std;
//==============================================================================
//
@@ -55,16 +53,16 @@ using namespace std;
//==============================================================================
static void stdDebugOutput(const string &msg)
static void stdDebugOutput(const std::string &msg)
{
cout << msg;
std::cout << msg;
}
static NCVDebugOutputHandler *debugOutputHandler = stdDebugOutput;
void ncvDebugOutput(const string &msg)
void ncvDebugOutput(const std::string &msg)
{
debugOutputHandler(msg);
}

View File

@@ -288,7 +288,7 @@ NCV_EXPORTS void ncvSetDebugOutputHandler(NCVDebugOutputHandler* func);
do \
{ \
cudaError_t res = cudacall; \
ncvAssertPrintReturn(cudaSuccess==res, "cudaError_t=" << res, errCode); \
ncvAssertPrintReturn(cudaSuccess==res, "cudaError_t=" << (int)res, errCode); \
} while (0)
@@ -296,7 +296,7 @@ NCV_EXPORTS void ncvSetDebugOutputHandler(NCVDebugOutputHandler* func);
do \
{ \
cudaError_t res = cudaGetLastError(); \
ncvAssertPrintReturn(cudaSuccess==res, "cudaError_t=" << res, errCode); \
ncvAssertPrintReturn(cudaSuccess==res, "cudaError_t=" << (int)res, errCode); \
} while (0)

View File

@@ -1,205 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_GPU_DEVICE_BLOCK_HPP__
#define __OPENCV_GPU_DEVICE_BLOCK_HPP__
namespace cv { namespace gpu { namespace device
{
struct Block
{
static __device__ __forceinline__ unsigned int id()
{
return blockIdx.x;
}
static __device__ __forceinline__ unsigned int stride()
{
return blockDim.x * blockDim.y * blockDim.z;
}
static __device__ __forceinline__ void sync()
{
__syncthreads();
}
static __device__ __forceinline__ int flattenedThreadId()
{
return threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
}
template<typename It, typename T>
static __device__ __forceinline__ void fill(It beg, It end, const T& value)
{
int STRIDE = stride();
It t = beg + flattenedThreadId();
for(; t < end; t += STRIDE)
*t = value;
}
template<typename OutIt, typename T>
static __device__ __forceinline__ void yota(OutIt beg, OutIt end, T value)
{
int STRIDE = stride();
int tid = flattenedThreadId();
value += tid;
for(OutIt t = beg + tid; t < end; t += STRIDE, value += STRIDE)
*t = value;
}
template<typename InIt, typename OutIt>
static __device__ __forceinline__ void copy(InIt beg, InIt end, OutIt out)
{
int STRIDE = stride();
InIt t = beg + flattenedThreadId();
OutIt o = out + (t - beg);
for(; t < end; t += STRIDE, o += STRIDE)
*o = *t;
}
template<typename InIt, typename OutIt, class UnOp>
static __device__ __forceinline__ void transfrom(InIt beg, InIt end, OutIt out, UnOp op)
{
int STRIDE = stride();
InIt t = beg + flattenedThreadId();
OutIt o = out + (t - beg);
for(; t < end; t += STRIDE, o += STRIDE)
*o = op(*t);
}
template<typename InIt1, typename InIt2, typename OutIt, class BinOp>
static __device__ __forceinline__ void transfrom(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op)
{
int STRIDE = stride();
InIt1 t1 = beg1 + flattenedThreadId();
InIt2 t2 = beg2 + flattenedThreadId();
OutIt o = out + (t1 - beg1);
for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, o += STRIDE)
*o = op(*t1, *t2);
}
template<int CTA_SIZE, typename T, class BinOp>
static __device__ __forceinline__ void reduce(volatile T* buffer, BinOp op)
{
int tid = flattenedThreadId();
T val = buffer[tid];
if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); }
if (tid < 32)
{
if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); }
if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); }
if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); }
if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); }
if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); }
if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); }
}
}
template<int CTA_SIZE, typename T, class BinOp>
static __device__ __forceinline__ T reduce(volatile T* buffer, T init, BinOp op)
{
int tid = flattenedThreadId();
T val = buffer[tid] = init;
__syncthreads();
if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); }
if (tid < 32)
{
if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); }
if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); }
if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); }
if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); }
if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); }
if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); }
}
__syncthreads();
return buffer[0];
}
template <typename T, class BinOp>
static __device__ __forceinline__ void reduce_n(T* data, unsigned int n, BinOp op)
{
int ftid = flattenedThreadId();
int sft = stride();
if (sft < n)
{
for (unsigned int i = sft + ftid; i < n; i += sft)
data[ftid] = op(data[ftid], data[i]);
__syncthreads();
n = sft;
}
while (n > 1)
{
unsigned int half = n/2;
if (ftid < half)
data[ftid] = op(data[ftid], data[n - ftid - 1]);
__syncthreads();
n = n - half;
}
}
};
}}}
#endif /* __OPENCV_GPU_DEVICE_BLOCK_HPP__ */