fixes for gpu module:

- fixed printCudaDeviceInfo for new CC
- fixed some compilation errors and warnings
- removed unset command from CMake script
- removed unused std imports
This commit is contained in:
Vladislav Vinogradov
2013-01-23 13:59:14 +04:00
parent b7e6b5af1b
commit ae6266e101
32 changed files with 232 additions and 144 deletions

View File

@@ -0,0 +1,205 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_GPU_DEVICE_BLOCK_HPP__
#define __OPENCV_GPU_DEVICE_BLOCK_HPP__
namespace cv { namespace gpu { namespace device
{
struct Block
{
static __device__ __forceinline__ unsigned int id()
{
return blockIdx.x;
}
static __device__ __forceinline__ unsigned int stride()
{
return blockDim.x * blockDim.y * blockDim.z;
}
static __device__ __forceinline__ void sync()
{
__syncthreads();
}
static __device__ __forceinline__ int flattenedThreadId()
{
return threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
}
template<typename It, typename T>
static __device__ __forceinline__ void fill(It beg, It end, const T& value)
{
int STRIDE = stride();
It t = beg + flattenedThreadId();
for(; t < end; t += STRIDE)
*t = value;
}
template<typename OutIt, typename T>
static __device__ __forceinline__ void yota(OutIt beg, OutIt end, T value)
{
int STRIDE = stride();
int tid = flattenedThreadId();
value += tid;
for(OutIt t = beg + tid; t < end; t += STRIDE, value += STRIDE)
*t = value;
}
template<typename InIt, typename OutIt>
static __device__ __forceinline__ void copy(InIt beg, InIt end, OutIt out)
{
int STRIDE = stride();
InIt t = beg + flattenedThreadId();
OutIt o = out + (t - beg);
for(; t < end; t += STRIDE, o += STRIDE)
*o = *t;
}
template<typename InIt, typename OutIt, class UnOp>
static __device__ __forceinline__ void transfrom(InIt beg, InIt end, OutIt out, UnOp op)
{
int STRIDE = stride();
InIt t = beg + flattenedThreadId();
OutIt o = out + (t - beg);
for(; t < end; t += STRIDE, o += STRIDE)
*o = op(*t);
}
template<typename InIt1, typename InIt2, typename OutIt, class BinOp>
static __device__ __forceinline__ void transfrom(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op)
{
int STRIDE = stride();
InIt1 t1 = beg1 + flattenedThreadId();
InIt2 t2 = beg2 + flattenedThreadId();
OutIt o = out + (t1 - beg1);
for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, o += STRIDE)
*o = op(*t1, *t2);
}
template<int CTA_SIZE, typename T, class BinOp>
static __device__ __forceinline__ void reduce(volatile T* buffer, BinOp op)
{
int tid = flattenedThreadId();
T val = buffer[tid];
if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); }
if (tid < 32)
{
if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); }
if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); }
if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); }
if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); }
if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); }
if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); }
}
}
template<int CTA_SIZE, typename T, class BinOp>
static __device__ __forceinline__ T reduce(volatile T* buffer, T init, BinOp op)
{
int tid = flattenedThreadId();
T val = buffer[tid] = init;
__syncthreads();
if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); }
if (tid < 32)
{
if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); }
if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); }
if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); }
if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); }
if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); }
if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); }
}
__syncthreads();
return buffer[0];
}
template <typename T, class BinOp>
static __device__ __forceinline__ void reduce_n(T* data, unsigned int n, BinOp op)
{
int ftid = flattenedThreadId();
int sft = stride();
if (sft < n)
{
for (unsigned int i = sft + ftid; i < n; i += sft)
data[ftid] = op(data[ftid], data[i]);
__syncthreads();
n = sft;
}
while (n > 1)
{
unsigned int half = n/2;
if (ftid < half)
data[ftid] = op(data[ftid], data[n - ftid - 1]);
__syncthreads();
n = n - half;
}
}
};
}}}
#endif /* __OPENCV_GPU_DEVICE_BLOCK_HPP__ */

View File

@@ -85,8 +85,6 @@ static inline void ___cudaSafeCall(cudaError_t err, const char *file, const int
cv::gpu::error(cudaGetErrorString(err), file, line, func);
}
#ifdef __CUDACC__
namespace cv { namespace gpu
{
__host__ __device__ __forceinline__ int divUp(int total, int grain)
@@ -96,19 +94,25 @@ namespace cv { namespace gpu
namespace device
{
using cv::gpu::divUp;
#ifdef __CUDACC__
typedef unsigned char uchar;
typedef unsigned short ushort;
typedef signed char schar;
typedef unsigned int uint;
#ifdef _WIN32
typedef unsigned int uint;
#endif
template<class T> inline void bindTexture(const textureReference* tex, const PtrStepSz<T>& img)
{
cudaChannelFormatDesc desc = cudaCreateChannelDesc<T>();
cudaSafeCall( cudaBindTexture2D(0, tex, img.ptr(), &desc, img.cols, img.rows, img.step) );
}
#endif // __CUDACC__
}
}}
#endif // __CUDACC__
#endif // __OPENCV_GPU_COMMON_HPP__

View File

@@ -44,7 +44,6 @@
#define OPENCV_GPU_EMULATION_HPP_
#include "warp_reduce.hpp"
#include <stdio.h>
namespace cv { namespace gpu { namespace device
{

View File

@@ -302,18 +302,18 @@ namespace cv { namespace gpu { namespace device
template <> struct name<type> : binary_function<type, type, type> \
{ \
__device__ __forceinline__ type operator()(type lhs, type rhs) const {return op(lhs, rhs);} \
__device__ __forceinline__ name(const name& other):binary_function<type, type, type>(){}\
__device__ __forceinline__ name():binary_function<type, type, type>(){}\
__device__ __forceinline__ name() {}\
__device__ __forceinline__ name(const name&) {}\
};
template <typename T> struct maximum : binary_function<T, T, T>
{
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType lhs, typename TypeTraits<T>::ParameterType rhs) const
{
return lhs < rhs ? rhs : lhs;
return max(lhs, rhs);
}
__device__ __forceinline__ maximum(const maximum& other):binary_function<T, T, T>(){}
__device__ __forceinline__ maximum():binary_function<T, T, T>(){}
__device__ __forceinline__ maximum() {}
__device__ __forceinline__ maximum(const maximum&) {}
};
OPENCV_GPU_IMPLEMENT_MINMAX(maximum, uchar, ::max)
@@ -330,10 +330,10 @@ namespace cv { namespace gpu { namespace device
{
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType lhs, typename TypeTraits<T>::ParameterType rhs) const
{
return lhs < rhs ? lhs : rhs;
return min(lhs, rhs);
}
__device__ __forceinline__ minimum(const minimum& other):binary_function<T, T, T>(){}
__device__ __forceinline__ minimum():binary_function<T, T, T>(){}
__device__ __forceinline__ minimum() {}
__device__ __forceinline__ minimum(const minimum&) {}
};
OPENCV_GPU_IMPLEMENT_MINMAX(minimum, uchar, ::min)
@@ -350,6 +350,108 @@ namespace cv { namespace gpu { namespace device
// Math functions
///bound=========================================
template <typename T> struct abs_func : unary_function<T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType x) const
{
return abs(x);
}
__device__ __forceinline__ abs_func() {}
__device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<unsigned char> : unary_function<unsigned char, unsigned char>
{
__device__ __forceinline__ unsigned char operator ()(unsigned char x) const
{
return x;
}
__device__ __forceinline__ abs_func() {}
__device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<signed char> : unary_function<signed char, signed char>
{
__device__ __forceinline__ signed char operator ()(signed char x) const
{
return ::abs((int)x);
}
__device__ __forceinline__ abs_func() {}
__device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<char> : unary_function<char, char>
{
__device__ __forceinline__ char operator ()(char x) const
{
return ::abs((int)x);
}
__device__ __forceinline__ abs_func() {}
__device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<unsigned short> : unary_function<unsigned short, unsigned short>
{
__device__ __forceinline__ unsigned short operator ()(unsigned short x) const
{
return x;
}
__device__ __forceinline__ abs_func() {}
__device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<short> : unary_function<short, short>
{
__device__ __forceinline__ short operator ()(short x) const
{
return ::abs((int)x);
}
__device__ __forceinline__ abs_func() {}
__device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<unsigned int> : unary_function<unsigned int, unsigned int>
{
__device__ __forceinline__ unsigned int operator ()(unsigned int x) const
{
return x;
}
__device__ __forceinline__ abs_func() {}
__device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<int> : unary_function<int, int>
{
__device__ __forceinline__ int operator ()(int x) const
{
return ::abs(x);
}
__device__ __forceinline__ abs_func() {}
__device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<float> : unary_function<float, float>
{
__device__ __forceinline__ float operator ()(float x) const
{
return ::fabsf(x);
}
__device__ __forceinline__ abs_func() {}
__device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<double> : unary_function<double, double>
{
__device__ __forceinline__ double operator ()(double x) const
{
return ::fabs(x);
}
__device__ __forceinline__ abs_func() {}
__device__ __forceinline__ abs_func(const abs_func&) {}
};
#define OPENCV_GPU_IMPLEMENT_UN_FUNCTOR(name, func) \
template <typename T> struct name ## _func : unary_function<T, float> \
{ \
@@ -357,6 +459,8 @@ namespace cv { namespace gpu { namespace device
{ \
return func ## f(v); \
} \
__device__ __forceinline__ name ## _func() {} \
__device__ __forceinline__ name ## _func(const name ## _func&) {} \
}; \
template <> struct name ## _func<double> : unary_function<double, double> \
{ \
@@ -364,6 +468,8 @@ namespace cv { namespace gpu { namespace device
{ \
return func(v); \
} \
__device__ __forceinline__ name ## _func() {} \
__device__ __forceinline__ name ## _func(const name ## _func&) {} \
};
#define OPENCV_GPU_IMPLEMENT_BIN_FUNCTOR(name, func) \
@@ -382,7 +488,6 @@ namespace cv { namespace gpu { namespace device
} \
};
OPENCV_GPU_IMPLEMENT_UN_FUNCTOR(fabs, ::fabs)
OPENCV_GPU_IMPLEMENT_UN_FUNCTOR(sqrt, ::sqrt)
OPENCV_GPU_IMPLEMENT_UN_FUNCTOR(exp, ::exp)
OPENCV_GPU_IMPLEMENT_UN_FUNCTOR(exp2, ::exp2)

View File

@@ -280,7 +280,7 @@ namespace cv { namespace gpu { namespace device
OPENCV_GPU_IMPLEMENT_VEC_UNOP (type, operator ! , logical_not) \
OPENCV_GPU_IMPLEMENT_VEC_BINOP(type, max, maximum) \
OPENCV_GPU_IMPLEMENT_VEC_BINOP(type, min, minimum) \
OPENCV_GPU_IMPLEMENT_VEC_UNOP(type, fabs, fabs_func) \
OPENCV_GPU_IMPLEMENT_VEC_UNOP(type, abs, abs_func) \
OPENCV_GPU_IMPLEMENT_VEC_UNOP(type, sqrt, sqrt_func) \
OPENCV_GPU_IMPLEMENT_VEC_UNOP(type, exp, exp_func) \
OPENCV_GPU_IMPLEMENT_VEC_UNOP(type, exp2, exp2_func) \
@@ -327,4 +327,4 @@ namespace cv { namespace gpu { namespace device
#undef OPENCV_GPU_IMPLEMENT_VEC_INT_OP
}}} // namespace cv { namespace gpu { namespace device
#endif // __OPENCV_GPU_VECMATH_HPP__
#endif // __OPENCV_GPU_VECMATH_HPP__