Vadim, Maria, Alex, Andrey and I fixed the EM algorithm
This commit is contained in:
parent
b8f2011f80
commit
ade6388d3a
@ -86,7 +86,8 @@ bool EM::train(InputArray samples,
|
|||||||
OutputArray probs,
|
OutputArray probs,
|
||||||
OutputArray logLikelihoods)
|
OutputArray logLikelihoods)
|
||||||
{
|
{
|
||||||
setTrainData(START_AUTO_STEP, samples.getMat(), 0, 0, 0, 0);
|
Mat samplesMat = samples.getMat();
|
||||||
|
setTrainData(START_AUTO_STEP, samplesMat, 0, 0, 0, 0);
|
||||||
return doTrain(START_AUTO_STEP, labels, probs, logLikelihoods);
|
return doTrain(START_AUTO_STEP, labels, probs, logLikelihoods);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -98,12 +99,13 @@ bool EM::trainE(InputArray samples,
|
|||||||
OutputArray probs,
|
OutputArray probs,
|
||||||
OutputArray logLikelihoods)
|
OutputArray logLikelihoods)
|
||||||
{
|
{
|
||||||
|
Mat samplesMat = samples.getMat();
|
||||||
vector<Mat> covs0;
|
vector<Mat> covs0;
|
||||||
_covs0.getMatVector(covs0);
|
_covs0.getMatVector(covs0);
|
||||||
|
|
||||||
Mat means0 = _means0.getMat(), weights0 = _weights0.getMat();
|
Mat means0 = _means0.getMat(), weights0 = _weights0.getMat();
|
||||||
|
|
||||||
setTrainData(START_E_STEP, samples.getMat(), 0, !_means0.empty() ? &means0 : 0,
|
setTrainData(START_E_STEP, samplesMat, 0, !_means0.empty() ? &means0 : 0,
|
||||||
!_covs0.empty() ? &covs0 : 0, _weights0.empty() ? &weights0 : 0);
|
!_covs0.empty() ? &covs0 : 0, _weights0.empty() ? &weights0 : 0);
|
||||||
return doTrain(START_E_STEP, labels, probs, logLikelihoods);
|
return doTrain(START_E_STEP, labels, probs, logLikelihoods);
|
||||||
}
|
}
|
||||||
@ -114,9 +116,10 @@ bool EM::trainM(InputArray samples,
|
|||||||
OutputArray probs,
|
OutputArray probs,
|
||||||
OutputArray logLikelihoods)
|
OutputArray logLikelihoods)
|
||||||
{
|
{
|
||||||
|
Mat samplesMat = samples.getMat();
|
||||||
Mat probs0 = _probs0.getMat();
|
Mat probs0 = _probs0.getMat();
|
||||||
|
|
||||||
setTrainData(START_M_STEP, samples.getMat(), !_probs0.empty() ? &probs0 : 0, 0, 0, 0);
|
setTrainData(START_M_STEP, samplesMat, !_probs0.empty() ? &probs0 : 0, 0, 0, 0);
|
||||||
return doTrain(START_M_STEP, labels, probs, logLikelihoods);
|
return doTrain(START_M_STEP, labels, probs, logLikelihoods);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -337,7 +340,11 @@ void EM::clusterTrainSamples()
|
|||||||
|
|
||||||
CV_Assert(meansFlt.type() == CV_32FC1);
|
CV_Assert(meansFlt.type() == CV_32FC1);
|
||||||
if(trainSamples.type() != CV_64FC1)
|
if(trainSamples.type() != CV_64FC1)
|
||||||
trainSamplesFlt.convertTo(trainSamples, CV_64FC1);
|
{
|
||||||
|
Mat trainSamplesBuffer;
|
||||||
|
trainSamplesFlt.convertTo(trainSamplesBuffer, CV_64FC1);
|
||||||
|
trainSamples = trainSamplesBuffer;
|
||||||
|
}
|
||||||
meansFlt.convertTo(means, CV_64FC1);
|
meansFlt.convertTo(means, CV_64FC1);
|
||||||
|
|
||||||
// Compute weights and covs
|
// Compute weights and covs
|
||||||
|
Loading…
x
Reference in New Issue
Block a user