more fix of mismatch functions on CPU OCL
This commit is contained in:
parent
2c06e59a69
commit
ad6aae4583
@ -44,6 +44,7 @@
|
|||||||
//M*/
|
//M*/
|
||||||
|
|
||||||
#include "precomp.hpp"
|
#include "precomp.hpp"
|
||||||
|
|
||||||
#include <functional>
|
#include <functional>
|
||||||
#include <iterator>
|
#include <iterator>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
@ -60,10 +61,11 @@ namespace cv
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template < int BLOCK_SIZE, int MAX_DESC_LEN, typename T/*, typename Mask*/ >
|
template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ >
|
||||||
void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||||
const oclMat &trainIdx, const oclMat &distance, int distType)
|
const oclMat &trainIdx, const oclMat &distance, int distType)
|
||||||
{
|
{
|
||||||
|
assert(query.type() == CV_32F);
|
||||||
cv::ocl::Context *ctx = query.clCxt;
|
cv::ocl::Context *ctx = query.clCxt;
|
||||||
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
|
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
|
||||||
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
|
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
|
||||||
@ -91,20 +93,21 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat
|
|||||||
|
|
||||||
std::string kernelName = "BruteForceMatch_UnrollMatch";
|
std::string kernelName = "BruteForceMatch_UnrollMatch";
|
||||||
|
|
||||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template < int BLOCK_SIZE, int MAX_DESC_LEN, typename T/*, typename Mask*/ >
|
template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ >
|
||||||
void matchUnrolledCached(const oclMat /*query*/, const oclMat * /*trains*/, int /*n*/, const oclMat /*mask*/,
|
void matchUnrolledCached(const oclMat /*query*/, const oclMat * /*trains*/, int /*n*/, const oclMat /*mask*/,
|
||||||
const oclMat &/*bestTrainIdx*/, const oclMat & /*bestImgIdx*/, const oclMat & /*bestDistance*/, int /*distType*/)
|
const oclMat &/*bestTrainIdx*/, const oclMat & /*bestImgIdx*/, const oclMat & /*bestDistance*/, int /*distType*/)
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
|
|
||||||
template < int BLOCK_SIZE, typename T/*, typename Mask*/ >
|
template < int BLOCK_SIZE/*, typename Mask*/ >
|
||||||
void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||||
const oclMat &trainIdx, const oclMat &distance, int distType)
|
const oclMat &trainIdx, const oclMat &distance, int distType)
|
||||||
{
|
{
|
||||||
|
assert(query.type() == CV_32F);
|
||||||
cv::ocl::Context *ctx = query.clCxt;
|
cv::ocl::Context *ctx = query.clCxt;
|
||||||
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
|
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
|
||||||
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
|
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
|
||||||
@ -130,21 +133,22 @@ void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
|||||||
|
|
||||||
std::string kernelName = "BruteForceMatch_Match";
|
std::string kernelName = "BruteForceMatch_Match";
|
||||||
|
|
||||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template < int BLOCK_SIZE, typename T/*, typename Mask*/ >
|
template < int BLOCK_SIZE/*, typename Mask*/ >
|
||||||
void match(const oclMat /*query*/, const oclMat * /*trains*/, int /*n*/, const oclMat /*mask*/,
|
void match(const oclMat /*query*/, const oclMat * /*trains*/, int /*n*/, const oclMat /*mask*/,
|
||||||
const oclMat &/*bestTrainIdx*/, const oclMat & /*bestImgIdx*/, const oclMat & /*bestDistance*/, int /*distType*/)
|
const oclMat &/*bestTrainIdx*/, const oclMat & /*bestImgIdx*/, const oclMat & /*bestDistance*/, int /*distType*/)
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
|
|
||||||
//radius_matchUnrolledCached
|
//radius_matchUnrolledCached
|
||||||
template < int BLOCK_SIZE, int MAX_DESC_LEN, typename T/*, typename Mask*/ >
|
template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ >
|
||||||
void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &/*mask*/,
|
void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &/*mask*/,
|
||||||
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType)
|
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType)
|
||||||
{
|
{
|
||||||
|
assert(query.type() == CV_32F);
|
||||||
cv::ocl::Context *ctx = query.clCxt;
|
cv::ocl::Context *ctx = query.clCxt;
|
||||||
size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1};
|
size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1};
|
||||||
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
|
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
|
||||||
@ -176,15 +180,16 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDist
|
|||||||
|
|
||||||
std::string kernelName = "BruteForceMatch_RadiusUnrollMatch";
|
std::string kernelName = "BruteForceMatch_RadiusUnrollMatch";
|
||||||
|
|
||||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//radius_match
|
//radius_match
|
||||||
template < int BLOCK_SIZE, typename T/*, typename Mask*/ >
|
template < int BLOCK_SIZE/*, typename Mask*/ >
|
||||||
void radius_match(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &/*mask*/,
|
void radius_match(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &/*mask*/,
|
||||||
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType)
|
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType)
|
||||||
{
|
{
|
||||||
|
assert(query.type() == CV_32F);
|
||||||
cv::ocl::Context *ctx = query.clCxt;
|
cv::ocl::Context *ctx = query.clCxt;
|
||||||
size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1};
|
size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1};
|
||||||
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
|
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
|
||||||
@ -214,263 +219,70 @@ void radius_match(const oclMat &query, const oclMat &train, float maxDistance, c
|
|||||||
|
|
||||||
std::string kernelName = "BruteForceMatch_RadiusMatch";
|
std::string kernelName = "BruteForceMatch_RadiusMatch";
|
||||||
|
|
||||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
|
||||||
//float *dis = (float *)clEnqueueMapBuffer(ctx->impl->clCmdQueue, (cl_mem)distance.data, CL_TRUE, CL_MAP_READ, 0, 8, 0, NULL, NULL, NULL);
|
|
||||||
//printf("%f, %f\n", dis[0], dis[1]);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// with mask
|
static void matchDispatcher(const oclMat &query, const oclMat &train, const oclMat &mask,
|
||||||
template < typename T/*, typename Mask*/ >
|
|
||||||
void matchDispatcher(const oclMat &query, const oclMat &train, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance, int distType)
|
const oclMat &trainIdx, const oclMat &distance, int distType)
|
||||||
{
|
{
|
||||||
|
const oclMat zeroMask;
|
||||||
|
const oclMat &tempMask = mask.data ? mask : zeroMask;
|
||||||
if (query.cols <= 64)
|
if (query.cols <= 64)
|
||||||
{
|
{
|
||||||
matchUnrolledCached<16, 64, T>(query, train, mask, trainIdx, distance, distType);
|
matchUnrolledCached<16, 64>(query, train, tempMask, trainIdx, distance, distType);
|
||||||
}
|
}
|
||||||
else if (query.cols <= 128)
|
else if (query.cols <= 128)
|
||||||
{
|
{
|
||||||
matchUnrolledCached<16, 128, T>(query, train, mask, trainIdx, distance, distType);
|
matchUnrolledCached<16, 128>(query, train, tempMask, trainIdx, distance, distType);
|
||||||
}
|
}
|
||||||
/*else if (query.cols <= 256)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 256, Dist>(query, train, mask, trainIdx, distance, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 512)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 512, Dist>(query, train, mask, trainIdx, distance, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 1024)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 1024, Dist>(query, train, mask, trainIdx, distance, stream);
|
|
||||||
}*/
|
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
match<16, T>(query, train, mask, trainIdx, distance, distType);
|
match<16>(query, train, tempMask, trainIdx, distance, distType);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// without mask
|
static void matchDispatcher(const oclMat &query, const oclMat *trains, int n, const oclMat &mask,
|
||||||
template < typename T/*, typename Mask*/ >
|
|
||||||
void matchDispatcher(const oclMat &query, const oclMat &train, const oclMat &trainIdx, const oclMat &distance, int distType)
|
|
||||||
{
|
|
||||||
oclMat mask;
|
|
||||||
if (query.cols <= 64)
|
|
||||||
{
|
|
||||||
matchUnrolledCached<16, 64, T>(query, train, mask, trainIdx, distance, distType);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 128)
|
|
||||||
{
|
|
||||||
matchUnrolledCached<16, 128, T>(query, train, mask, trainIdx, distance, distType);
|
|
||||||
}
|
|
||||||
/*else if (query.cols <= 256)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 256, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 512)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 512, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 1024)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 1024, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance);
|
|
||||||
}*/
|
|
||||||
else
|
|
||||||
{
|
|
||||||
match<16, T>(query, train, mask, trainIdx, distance, distType);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template < typename T/*, typename Mask*/ >
|
|
||||||
void matchDispatcher(const oclMat &query, const oclMat *trains, int n, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, int distType)
|
const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, int distType)
|
||||||
{
|
{
|
||||||
|
const oclMat zeroMask;
|
||||||
|
const oclMat &tempMask = mask.data ? mask : zeroMask;
|
||||||
if (query.cols <= 64)
|
if (query.cols <= 64)
|
||||||
{
|
{
|
||||||
matchUnrolledCached<16, 64, T>(query, trains, n, mask, trainIdx, imgIdx, distance, distType);
|
matchUnrolledCached<16, 64>(query, trains, n, tempMask, trainIdx, imgIdx, distance, distType);
|
||||||
}
|
}
|
||||||
else if (query.cols <= 128)
|
else if (query.cols <= 128)
|
||||||
{
|
{
|
||||||
matchUnrolledCached<16, 128, T>(query, trains, n, mask, trainIdx, imgIdx, distance, distType);
|
matchUnrolledCached<16, 128>(query, trains, n, tempMask, trainIdx, imgIdx, distance, distType);
|
||||||
}
|
}
|
||||||
/*else if (query.cols <= 256)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 256, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 512)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 512, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 1024)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 1024, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
|
|
||||||
}*/
|
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
match<16, T>(query, trains, n, mask, trainIdx, imgIdx, distance, distType);
|
match<16>(query, trains, n, tempMask, trainIdx, imgIdx, distance, distType);
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template < typename T/*, typename Mask*/ >
|
|
||||||
void matchDispatcher(const oclMat &query, const oclMat *trains, int n, const oclMat &trainIdx,
|
|
||||||
const oclMat &imgIdx, const oclMat &distance, int distType)
|
|
||||||
{
|
|
||||||
oclMat mask;
|
|
||||||
if (query.cols <= 64)
|
|
||||||
{
|
|
||||||
matchUnrolledCached<16, 64, T>(query, trains, n, mask, trainIdx, imgIdx, distance, distType);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 128)
|
|
||||||
{
|
|
||||||
matchUnrolledCached<16, 128, T>(query, trains, n, mask, trainIdx, imgIdx, distance, distType);
|
|
||||||
}
|
|
||||||
/*else if (query.cols <= 256)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 256, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 512)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 512, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 1024)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 1024, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
|
|
||||||
}*/
|
|
||||||
else
|
|
||||||
{
|
|
||||||
match<16, T>(query, trains, n, mask, trainIdx, imgIdx, distance, distType);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//radius matchDispatcher
|
//radius matchDispatcher
|
||||||
// with mask
|
static void matchDispatcher(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &mask,
|
||||||
template < typename T/*, typename Mask*/ >
|
|
||||||
void matchDispatcher(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType)
|
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType)
|
||||||
{
|
{
|
||||||
|
const oclMat zeroMask;
|
||||||
|
const oclMat &tempMask = mask.data ? mask : zeroMask;
|
||||||
if (query.cols <= 64)
|
if (query.cols <= 64)
|
||||||
{
|
{
|
||||||
matchUnrolledCached<16, 64, T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
matchUnrolledCached<16, 64>(query, train, maxDistance, tempMask, trainIdx, distance, nMatches, distType);
|
||||||
}
|
}
|
||||||
else if (query.cols <= 128)
|
else if (query.cols <= 128)
|
||||||
{
|
{
|
||||||
matchUnrolledCached<16, 128, T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
matchUnrolledCached<16, 128>(query, train, maxDistance, tempMask, trainIdx, distance, nMatches, distType);
|
||||||
}
|
}
|
||||||
/*else if (query.cols <= 256)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 256, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 512)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 512, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 1024)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 1024, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
|
||||||
}*/
|
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
radius_match<16, T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
radius_match<16>(query, train, maxDistance, tempMask, trainIdx, distance, nMatches, distType);
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// without mask
|
|
||||||
template < typename T/*, typename Mask*/ >
|
|
||||||
void matchDispatcher(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &trainIdx,
|
|
||||||
const oclMat &distance, const oclMat &nMatches, int distType)
|
|
||||||
{
|
|
||||||
oclMat mask;
|
|
||||||
if (query.cols <= 64)
|
|
||||||
{
|
|
||||||
matchUnrolledCached<16, 64, T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 128)
|
|
||||||
{
|
|
||||||
matchUnrolledCached<16, 128, T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
|
||||||
}
|
|
||||||
/*else if (query.cols <= 256)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 256, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 512)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 512, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 1024)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 1024, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
|
||||||
}*/
|
|
||||||
else
|
|
||||||
{
|
|
||||||
radius_match<16, T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template < typename T/*, typename Mask*/ >
|
|
||||||
void matchDispatcher(const oclMat &query, const oclMat &train, int n, float maxDistance, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType)
|
|
||||||
{
|
|
||||||
if (query.cols <= 64)
|
|
||||||
{
|
|
||||||
matchUnrolledCached<16, 64, T>(query, train, n, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 128)
|
|
||||||
{
|
|
||||||
matchUnrolledCached<16, 128, T>(query, train, n, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
|
||||||
}
|
|
||||||
/*else if (query.cols <= 256)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 256, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 512)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 512, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 1024)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 1024, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
|
||||||
}*/
|
|
||||||
else
|
|
||||||
{
|
|
||||||
match<16, T>(query, train, n, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// without mask
|
|
||||||
template < typename T/*, typename Mask*/ >
|
|
||||||
void matchDispatcher(const oclMat &query, const oclMat &train, int n, float maxDistance, const oclMat &trainIdx,
|
|
||||||
const oclMat &distance, const oclMat &nMatches, int distType)
|
|
||||||
{
|
|
||||||
oclMat mask;
|
|
||||||
if (query.cols <= 64)
|
|
||||||
{
|
|
||||||
matchUnrolledCached<16, 64, T>(query, train, n, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 128)
|
|
||||||
{
|
|
||||||
matchUnrolledCached<16, 128, T>(query, train, n, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
|
||||||
}
|
|
||||||
/*else if (query.cols <= 256)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 256, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 512)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 512, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 1024)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 1024, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
|
||||||
}*/
|
|
||||||
else
|
|
||||||
{
|
|
||||||
match<16, T>(query, train, n, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//knn match Dispatcher
|
//knn match Dispatcher
|
||||||
template < int BLOCK_SIZE, int MAX_DESC_LEN, typename T/*, typename Mask*/ >
|
template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ >
|
||||||
void knn_matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
void knn_matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||||
const oclMat &trainIdx, const oclMat &distance, int distType)
|
const oclMat &trainIdx, const oclMat &distance, int distType)
|
||||||
{
|
{
|
||||||
@ -501,11 +313,11 @@ void knn_matchUnrolledCached(const oclMat &query, const oclMat &train, const ocl
|
|||||||
|
|
||||||
std::string kernelName = "BruteForceMatch_knnUnrollMatch";
|
std::string kernelName = "BruteForceMatch_knnUnrollMatch";
|
||||||
|
|
||||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template < int BLOCK_SIZE, typename T/*, typename Mask*/ >
|
template < int BLOCK_SIZE/*, typename Mask*/ >
|
||||||
void knn_match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
void knn_match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||||
const oclMat &trainIdx, const oclMat &distance, int distType)
|
const oclMat &trainIdx, const oclMat &distance, int distType)
|
||||||
{
|
{
|
||||||
@ -534,11 +346,11 @@ void knn_match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
|||||||
|
|
||||||
std::string kernelName = "BruteForceMatch_knnMatch";
|
std::string kernelName = "BruteForceMatch_knnMatch";
|
||||||
|
|
||||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template < int BLOCK_SIZE, int MAX_DESC_LEN, typename T/*, typename Mask*/ >
|
template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ >
|
||||||
void calcDistanceUnrolled(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &allDist, int distType)
|
void calcDistanceUnrolled(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &allDist, int distType)
|
||||||
{
|
{
|
||||||
cv::ocl::Context *ctx = query.clCxt;
|
cv::ocl::Context *ctx = query.clCxt;
|
||||||
@ -567,11 +379,11 @@ void calcDistanceUnrolled(const oclMat &query, const oclMat &train, const oclMat
|
|||||||
|
|
||||||
std::string kernelName = "BruteForceMatch_calcDistanceUnrolled";
|
std::string kernelName = "BruteForceMatch_calcDistanceUnrolled";
|
||||||
|
|
||||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template < int BLOCK_SIZE, typename T/*, typename Mask*/ >
|
template < int BLOCK_SIZE/*, typename Mask*/ >
|
||||||
void calcDistance(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &allDist, int distType)
|
void calcDistance(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &allDist, int distType)
|
||||||
{
|
{
|
||||||
cv::ocl::Context *ctx = query.clCxt;
|
cv::ocl::Context *ctx = query.clCxt;
|
||||||
@ -598,69 +410,43 @@ void calcDistance(const oclMat &query, const oclMat &train, const oclMat &/*mask
|
|||||||
|
|
||||||
std::string kernelName = "BruteForceMatch_calcDistance";
|
std::string kernelName = "BruteForceMatch_calcDistance";
|
||||||
|
|
||||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// Calc Distance dispatcher
|
// Calc Distance dispatcher
|
||||||
template < typename T/*, typename Mask*/ >
|
static void calcDistanceDispatcher(const oclMat &query, const oclMat &train, const oclMat &mask,
|
||||||
void calcDistanceDispatcher(const oclMat &query, const oclMat &train, const oclMat &mask,
|
|
||||||
const oclMat &allDist, int distType)
|
const oclMat &allDist, int distType)
|
||||||
{
|
{
|
||||||
if (query.cols <= 64)
|
if (query.cols <= 64)
|
||||||
{
|
{
|
||||||
calcDistanceUnrolled<16, 64, T>(query, train, mask, allDist, distType);
|
calcDistanceUnrolled<16, 64>(query, train, mask, allDist, distType);
|
||||||
}
|
}
|
||||||
else if (query.cols <= 128)
|
else if (query.cols <= 128)
|
||||||
{
|
{
|
||||||
calcDistanceUnrolled<16, 128, T>(query, train, mask, allDist, distType);
|
calcDistanceUnrolled<16, 128>(query, train, mask, allDist, distType);
|
||||||
}
|
}
|
||||||
/*else if (query.cols <= 256)
|
|
||||||
{
|
|
||||||
calcDistanceUnrolled<16, 256, Dist>(query, train, mask, allDist, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 512)
|
|
||||||
{
|
|
||||||
calcDistanceUnrolled<16, 512, Dist>(query, train, mask, allDist, stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 1024)
|
|
||||||
{
|
|
||||||
calcDistanceUnrolled<16, 1024, Dist>(query, train, mask, allDist, stream);
|
|
||||||
}*/
|
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
calcDistance<16, T>(query, train, mask, allDist, distType);
|
calcDistance<16>(query, train, mask, allDist, distType);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template < typename T/*, typename Mask*/ >
|
static void match2Dispatcher(const oclMat &query, const oclMat &train, const oclMat &mask,
|
||||||
void match2Dispatcher(const oclMat &query, const oclMat &train, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance, int distType)
|
const oclMat &trainIdx, const oclMat &distance, int distType)
|
||||||
{
|
{
|
||||||
if (query.cols <= 64)
|
if (query.cols <= 64)
|
||||||
{
|
{
|
||||||
knn_matchUnrolledCached<16, 64, T>(query, train, mask, trainIdx, distance, distType);
|
knn_matchUnrolledCached<16, 64>(query, train, mask, trainIdx, distance, distType);
|
||||||
}
|
}
|
||||||
else if (query.cols <= 128)
|
else if (query.cols <= 128)
|
||||||
{
|
{
|
||||||
knn_matchUnrolledCached<16, 128, T>(query, train, mask, trainIdx, distance, distType);
|
knn_matchUnrolledCached<16, 128>(query, train, mask, trainIdx, distance, distType);
|
||||||
}
|
}
|
||||||
/*else if (query.cols <= 256)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 256, Dist>(query, train, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> > (distance), stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 512)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 512, Dist>(query, train, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> > (distance), stream);
|
|
||||||
}
|
|
||||||
else if (query.cols <= 1024)
|
|
||||||
{
|
|
||||||
matchUnrolled<16, 1024, Dist>(query, train, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> > (distance), stream);
|
|
||||||
}*/
|
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
knn_match<16, T>(query, train, mask, trainIdx, distance, distType);
|
knn_match<16>(query, train, mask, trainIdx, distance, distType);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -686,7 +472,7 @@ void findKnnMatch(int k, const oclMat &trainIdx, const oclMat &distance, const o
|
|||||||
//args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
|
//args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
|
||||||
//args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
|
//args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
|
||||||
|
|
||||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, trainIdx.depth(), -1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -695,206 +481,22 @@ static void findKnnMatchDispatcher(int k, const oclMat &trainIdx, const oclMat &
|
|||||||
findKnnMatch<256>(k, trainIdx, distance, allDist, distType);
|
findKnnMatch<256>(k, trainIdx, distance, allDist, distType);
|
||||||
}
|
}
|
||||||
|
|
||||||
//with mask
|
static void kmatchDispatcher(const oclMat &query, const oclMat &train, int k, const oclMat &mask,
|
||||||
template < typename T/*, typename Mask*/ >
|
|
||||||
void kmatchDispatcher(const oclMat &query, const oclMat &train, int k, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance, const oclMat &allDist, int distType)
|
const oclMat &trainIdx, const oclMat &distance, const oclMat &allDist, int distType)
|
||||||
{
|
{
|
||||||
|
const oclMat zeroMask;
|
||||||
|
const oclMat &tempMask = mask.data ? mask : zeroMask;
|
||||||
if (k == 2)
|
if (k == 2)
|
||||||
{
|
{
|
||||||
match2Dispatcher<T>(query, train, mask, trainIdx, distance, distType);
|
match2Dispatcher(query, train, tempMask, trainIdx, distance, distType);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
calcDistanceDispatcher<T>(query, train, mask, allDist, distType);
|
calcDistanceDispatcher(query, train, tempMask, allDist, distType);
|
||||||
findKnnMatchDispatcher(k, trainIdx, distance, allDist, distType);
|
findKnnMatchDispatcher(k, trainIdx, distance, allDist, distType);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//without mask
|
|
||||||
template < typename T/*, typename Mask*/ >
|
|
||||||
void kmatchDispatcher(const oclMat &query, const oclMat &train, int k,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance, const oclMat &allDist, int distType)
|
|
||||||
{
|
|
||||||
oclMat mask;
|
|
||||||
if (k == 2)
|
|
||||||
{
|
|
||||||
match2Dispatcher<T>(query, train, mask, trainIdx, distance, distType);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
calcDistanceDispatcher<T>(query, train, mask, allDist, distType);
|
|
||||||
findKnnMatchDispatcher(k, trainIdx, distance, allDist, distType);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
void ocl_matchL1_gpu(const oclMat &query, const oclMat &train, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance)
|
|
||||||
{
|
|
||||||
int distType = 0;
|
|
||||||
if (mask.data)
|
|
||||||
{
|
|
||||||
matchDispatcher<T>(query, train, mask, trainIdx, distance, distType);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
matchDispatcher< T >(query, train, trainIdx, distance, distType);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
void ocl_matchL1_gpu(const oclMat &query, const oclMat &trains, const oclMat &masks,
|
|
||||||
const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance)
|
|
||||||
{
|
|
||||||
int distType = 0;
|
|
||||||
|
|
||||||
if (masks.data)
|
|
||||||
{
|
|
||||||
matchDispatcher<T>(query, (const oclMat *)trains.ptr(), trains.cols, masks, trainIdx, imgIdx, distance, distType);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
matchDispatcher<T>(query, (const oclMat *)trains.ptr(), trains.cols, trainIdx, imgIdx, distance, distType);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
void ocl_matchL2_gpu(const oclMat &query, const oclMat &train, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance)
|
|
||||||
{
|
|
||||||
int distType = 1;
|
|
||||||
if (mask.data)
|
|
||||||
{
|
|
||||||
matchDispatcher<T>(query, train, mask, trainIdx, distance, distType);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
matchDispatcher<T >(query, train, trainIdx, distance, distType);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
void ocl_matchL2_gpu(const oclMat &query, const oclMat &trains, const oclMat &masks,
|
|
||||||
const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance)
|
|
||||||
{
|
|
||||||
int distType = 1;
|
|
||||||
if (masks.data)
|
|
||||||
{
|
|
||||||
matchDispatcher<T>(query, (const oclMat *)trains.ptr(), trains.cols, masks, trainIdx, imgIdx, distance, distType);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
matchDispatcher<T>(query, (const oclMat *)trains.ptr(), trains.cols, trainIdx, imgIdx, distance, distType);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
void ocl_matchHamming_gpu(const oclMat &query, const oclMat &train, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance)
|
|
||||||
{
|
|
||||||
int distType = 2;
|
|
||||||
if (mask.data)
|
|
||||||
{
|
|
||||||
matchDispatcher<T>(query, train, mask, trainIdx, distance, distType);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
matchDispatcher< T >(query, train, trainIdx, distance, distType);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
void ocl_matchHamming_gpu(const oclMat &query, const oclMat &trains, const oclMat &masks,
|
|
||||||
const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance)
|
|
||||||
{
|
|
||||||
int distType = 2;
|
|
||||||
if (masks.data)
|
|
||||||
{
|
|
||||||
matchDispatcher<T>(query, (const oclMat *)trains.ptr(), trains.cols, masks, trainIdx, imgIdx, distance, distType);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
matchDispatcher<T>(query, (const oclMat *)trains.ptr(), trains.cols, trainIdx, imgIdx, distance, distType);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// knn caller
|
|
||||||
template <typename T>
|
|
||||||
void ocl_matchL1_gpu(const oclMat &query, const oclMat &train, int k, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance, const oclMat &allDist)
|
|
||||||
{
|
|
||||||
int distType = 0;
|
|
||||||
|
|
||||||
if (mask.data)
|
|
||||||
kmatchDispatcher<T>(query, train, k, mask, trainIdx, distance, allDist, distType);
|
|
||||||
else
|
|
||||||
kmatchDispatcher<T>(query, train, k, trainIdx, distance, allDist, distType);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
void ocl_matchL2_gpu(const oclMat &query, const oclMat &train, int k, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance, const oclMat &allDist)
|
|
||||||
{
|
|
||||||
int distType = 1;
|
|
||||||
|
|
||||||
if (mask.data)
|
|
||||||
kmatchDispatcher<T>(query, train, k, mask, trainIdx, distance, allDist, distType);
|
|
||||||
else
|
|
||||||
kmatchDispatcher<T>(query, train, k, trainIdx, distance, allDist, distType);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
void ocl_matchHamming_gpu(const oclMat &query, const oclMat &train, int k, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance, const oclMat &allDist)
|
|
||||||
{
|
|
||||||
int distType = 2;
|
|
||||||
|
|
||||||
if (mask.data)
|
|
||||||
kmatchDispatcher<T>(query, train, k, mask, trainIdx, distance, allDist, distType);
|
|
||||||
else
|
|
||||||
kmatchDispatcher<T>(query, train, k, trainIdx, distance, allDist, distType);
|
|
||||||
}
|
|
||||||
|
|
||||||
//radius caller
|
|
||||||
template <typename T>
|
|
||||||
void ocl_matchL1_gpu(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches)
|
|
||||||
{
|
|
||||||
int distType = 0;
|
|
||||||
|
|
||||||
if (mask.data)
|
|
||||||
matchDispatcher<T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
|
||||||
else
|
|
||||||
matchDispatcher<T>(query, train, maxDistance, trainIdx, distance, nMatches, distType);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
void ocl_matchL2_gpu(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches)
|
|
||||||
{
|
|
||||||
int distType = 1;
|
|
||||||
|
|
||||||
if (mask.data)
|
|
||||||
matchDispatcher<T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
|
||||||
else
|
|
||||||
matchDispatcher<T>(query, train, maxDistance, trainIdx, distance, nMatches, distType);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
void ocl_matchHamming_gpu(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &mask,
|
|
||||||
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches)
|
|
||||||
{
|
|
||||||
int distType = 2;
|
|
||||||
|
|
||||||
if (mask.data)
|
|
||||||
matchDispatcher<T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
|
||||||
else
|
|
||||||
matchDispatcher<T>(query, train, maxDistance, trainIdx, distance, nMatches, distType);
|
|
||||||
}
|
|
||||||
|
|
||||||
cv::ocl::BruteForceMatcher_OCL_base::BruteForceMatcher_OCL_base(DistType distType_) : distType(distType_)
|
cv::ocl::BruteForceMatcher_OCL_base::BruteForceMatcher_OCL_base(DistType distType_) : distType(distType_)
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
@ -930,37 +532,27 @@ void cv::ocl::BruteForceMatcher_OCL_base::matchSingle(const oclMat &query, const
|
|||||||
if (query.empty() || train.empty())
|
if (query.empty() || train.empty())
|
||||||
return;
|
return;
|
||||||
|
|
||||||
typedef void (*caller_t)(const oclMat & query, const oclMat & train, const oclMat & mask,
|
// match1 doesn't support signed char type, match2 only support float, hamming support uchar, ushort and int
|
||||||
const oclMat & trainIdx, const oclMat & distance);
|
int callType = query.depth();
|
||||||
|
char cvFuncName[] = "singleMatch";
|
||||||
|
if (callType != 5)
|
||||||
|
CV_ERROR(CV_UNSUPPORTED_FORMAT_ERR, "BruteForceMatch OpenCL only support float type query!\n");
|
||||||
|
|
||||||
static const caller_t callers[3][6] =
|
if ((distType == 0 && callType == 1 ) || (distType == 1 && callType != 5) || (distType == 2 && (callType != 0
|
||||||
|
|| callType != 2 || callType != 4)))
|
||||||
{
|
{
|
||||||
{
|
CV_ERROR(CV_UNSUPPORTED_DEPTH_ERR, "BruteForceMatch OpenCL only support float type query!\n");
|
||||||
ocl_matchL1_gpu<unsigned char>, 0/*ocl_matchL1_gpu<signed char>*/,
|
}
|
||||||
ocl_matchL1_gpu<unsigned short>, ocl_matchL1_gpu<short>,
|
|
||||||
ocl_matchL1_gpu<int>, ocl_matchL1_gpu<float>
|
|
||||||
},
|
|
||||||
{
|
|
||||||
0/*ocl_matchL2_gpu<unsigned char>*/, 0/*ocl_matchL2_gpu<signed char>*/,
|
|
||||||
0/*ocl_matchL2_gpu<unsigned short>*/, 0/*ocl_matchL2_gpu<short>*/,
|
|
||||||
0/*ocl_matchL2_gpu<int>*/, ocl_matchL2_gpu<float>
|
|
||||||
},
|
|
||||||
{
|
|
||||||
ocl_matchHamming_gpu<unsigned char>, 0/*ocl_matchHamming_gpu<signed char>*/,
|
|
||||||
ocl_matchHamming_gpu<unsigned short>, 0/*ocl_matchHamming_gpu<short>*/,
|
|
||||||
ocl_matchHamming_gpu<int>, 0/*ocl_matchHamming_gpu<float>*/
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
|
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
|
||||||
CV_Assert(train.cols == query.cols && train.type() == query.type());
|
CV_Assert(train.cols == query.cols && train.type() == query.type());
|
||||||
|
|
||||||
const int nQuery = query.rows;
|
trainIdx.create(1, query.rows, CV_32S);
|
||||||
trainIdx.create(1, nQuery, CV_32S);
|
distance.create(1, query.rows, CV_32F);
|
||||||
distance.create(1, nQuery, CV_32F);
|
|
||||||
|
|
||||||
caller_t func = callers[distType][query.depth()];
|
matchDispatcher(query, train, mask, trainIdx, distance, distType);
|
||||||
func(query, train, mask, trainIdx, distance);
|
exit:
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
void cv::ocl::BruteForceMatcher_OCL_base::matchDownload(const oclMat &trainIdx, const oclMat &distance, vector<DMatch> &matches)
|
void cv::ocl::BruteForceMatcher_OCL_base::matchDownload(const oclMat &trainIdx, const oclMat &distance, vector<DMatch> &matches)
|
||||||
@ -1062,40 +654,27 @@ void cv::ocl::BruteForceMatcher_OCL_base::matchCollection(const oclMat &query, c
|
|||||||
if (query.empty() || trainCollection.empty())
|
if (query.empty() || trainCollection.empty())
|
||||||
return;
|
return;
|
||||||
|
|
||||||
typedef void (*caller_t)(const oclMat & query, const oclMat & trains, const oclMat & masks,
|
// match1 doesn't support signed char type, match2 only support float, hamming support uchar, ushort and int
|
||||||
const oclMat & trainIdx, const oclMat & imgIdx, const oclMat & distance);
|
int callType = query.depth();
|
||||||
|
char cvFuncName[] = "matchCollection";
|
||||||
|
if (callType != 5)
|
||||||
|
CV_ERROR(CV_UNSUPPORTED_FORMAT_ERR, "BruteForceMatch OpenCL only support float type query!\n");
|
||||||
|
|
||||||
static const caller_t callers[3][6] =
|
if ((distType == 0 && callType == 1 ) || (distType == 1 && callType != 5) || (distType == 2 && (callType != 0
|
||||||
|
|| callType != 2 || callType != 4)))
|
||||||
{
|
{
|
||||||
{
|
CV_ERROR(CV_UNSUPPORTED_DEPTH_ERR, "BruteForceMatch OpenCL only support float type query!\n");
|
||||||
ocl_matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
|
}
|
||||||
ocl_matchL1_gpu<unsigned short>, ocl_matchL1_gpu<short>,
|
|
||||||
ocl_matchL1_gpu<int>, ocl_matchL1_gpu<float>
|
|
||||||
},
|
|
||||||
{
|
|
||||||
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
|
|
||||||
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
|
|
||||||
0/*matchL2_gpu<int>*/, ocl_matchL2_gpu<float>
|
|
||||||
},
|
|
||||||
{
|
|
||||||
ocl_matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
|
|
||||||
ocl_matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
|
|
||||||
ocl_matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
|
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
|
||||||
|
|
||||||
const int nQuery = query.rows;
|
trainIdx.create(1, query.rows, CV_32S);
|
||||||
|
imgIdx.create(1, query.rows, CV_32S);
|
||||||
|
distance.create(1, query.rows, CV_32F);
|
||||||
|
|
||||||
trainIdx.create(1, nQuery, CV_32S);
|
matchDispatcher(query, (const oclMat *)trainCollection.ptr(), trainCollection.cols, masks, trainIdx, imgIdx, distance, distType);
|
||||||
imgIdx.create(1, nQuery, CV_32S);
|
exit:
|
||||||
distance.create(1, nQuery, CV_32F);
|
return;
|
||||||
|
|
||||||
caller_t func = callers[distType][query.depth()];
|
|
||||||
CV_Assert(func != 0);
|
|
||||||
|
|
||||||
func(query, trainCollection, masks, trainIdx, imgIdx, distance);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void cv::ocl::BruteForceMatcher_OCL_base::matchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, vector<DMatch> &matches)
|
void cv::ocl::BruteForceMatcher_OCL_base::matchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, vector<DMatch> &matches)
|
||||||
@ -1164,52 +743,39 @@ void cv::ocl::BruteForceMatcher_OCL_base::knnMatchSingle(const oclMat &query, co
|
|||||||
if (query.empty() || train.empty())
|
if (query.empty() || train.empty())
|
||||||
return;
|
return;
|
||||||
|
|
||||||
typedef void (*caller_t)(const oclMat & query, const oclMat & train, int k, const oclMat & mask,
|
// match1 doesn't support signed char type, match2 only support float, hamming support uchar, ushort and int
|
||||||
const oclMat & trainIdx, const oclMat & distance, const oclMat & allDist);
|
int callType = query.depth();
|
||||||
|
|
||||||
static const caller_t callers[3][6] =
|
char cvFuncName[] = "knnMatchSingle";
|
||||||
|
if (callType != 5)
|
||||||
|
CV_ERROR(CV_UNSUPPORTED_FORMAT_ERR, "BruteForceMatch OpenCL only support float type query!\n");
|
||||||
|
|
||||||
|
if ((distType == 0 && callType == 1 ) || (distType == 1 && callType != 5) || (distType == 2 && (callType != 0
|
||||||
|
|| callType != 2 || callType != 4)))
|
||||||
{
|
{
|
||||||
{
|
CV_ERROR(CV_UNSUPPORTED_DEPTH_ERR, "BruteForceMatch OpenCL only support float type query!\n");
|
||||||
ocl_matchL1_gpu<unsigned char>, 0/*ocl_matchL1_gpu<signed char>*/,
|
}
|
||||||
ocl_matchL1_gpu<unsigned short>, ocl_matchL1_gpu<short>,
|
|
||||||
ocl_matchL1_gpu<int>, ocl_matchL1_gpu<float>
|
|
||||||
},
|
|
||||||
{
|
|
||||||
0/*ocl_matchL2_gpu<unsigned char>*/, 0/*ocl_matchL2_gpu<signed char>*/,
|
|
||||||
0/*ocl_matchL2_gpu<unsigned short>*/, 0/*ocl_matchL2_gpu<short>*/,
|
|
||||||
0/*ocl_matchL2_gpu<int>*/, ocl_matchL2_gpu<float>
|
|
||||||
},
|
|
||||||
{
|
|
||||||
ocl_matchHamming_gpu<unsigned char>, 0/*ocl_matchHamming_gpu<signed char>*/,
|
|
||||||
ocl_matchHamming_gpu<unsigned short>, 0/*ocl_matchHamming_gpu<short>*/,
|
|
||||||
ocl_matchHamming_gpu<int>, 0/*ocl_matchHamming_gpu<float>*/
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
|
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
|
||||||
CV_Assert(train.type() == query.type() && train.cols == query.cols);
|
CV_Assert(train.type() == query.type() && train.cols == query.cols);
|
||||||
|
|
||||||
const int nQuery = query.rows;
|
|
||||||
const int nTrain = train.rows;
|
|
||||||
|
|
||||||
if (k == 2)
|
if (k == 2)
|
||||||
{
|
{
|
||||||
trainIdx.create(1, nQuery, CV_32SC2);
|
trainIdx.create(1, query.rows, CV_32SC2);
|
||||||
distance.create(1, nQuery, CV_32FC2);
|
distance.create(1, query.rows, CV_32FC2);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
trainIdx.create(nQuery, k, CV_32S);
|
trainIdx.create(query.rows, k, CV_32S);
|
||||||
distance.create(nQuery, k, CV_32F);
|
distance.create(query.rows, k, CV_32F);
|
||||||
allDist.create(nQuery, nTrain, CV_32FC1);
|
allDist.create(query.rows, train.rows, CV_32FC1);
|
||||||
}
|
}
|
||||||
|
|
||||||
trainIdx.setTo(Scalar::all(-1));
|
trainIdx.setTo(Scalar::all(-1));
|
||||||
|
|
||||||
caller_t func = callers[distType][query.depth()];
|
kmatchDispatcher(query, train, k, mask, trainIdx, distance, allDist, distType);
|
||||||
CV_Assert(func != 0);
|
exit:
|
||||||
|
return;
|
||||||
func(query, train, k, mask, trainIdx, distance, allDist);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void cv::ocl::BruteForceMatcher_OCL_base::knnMatchDownload(const oclMat &trainIdx, const oclMat &distance, vector< vector<DMatch> > &matches, bool compactResult)
|
void cv::ocl::BruteForceMatcher_OCL_base::knnMatchDownload(const oclMat &trainIdx, const oclMat &distance, vector< vector<DMatch> > &matches, bool compactResult)
|
||||||
@ -1394,8 +960,6 @@ namespace
|
|||||||
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch(const oclMat &query, vector< vector<DMatch> > &matches, int k,
|
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch(const oclMat &query, vector< vector<DMatch> > &matches, int k,
|
||||||
const vector<oclMat> &masks, bool compactResult)
|
const vector<oclMat> &masks, bool compactResult)
|
||||||
{
|
{
|
||||||
|
|
||||||
|
|
||||||
if (k == 2)
|
if (k == 2)
|
||||||
{
|
{
|
||||||
oclMat trainCollection;
|
oclMat trainCollection;
|
||||||
@ -1455,50 +1019,34 @@ void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchSingle(const oclMat &query,
|
|||||||
if (query.empty() || train.empty())
|
if (query.empty() || train.empty())
|
||||||
return;
|
return;
|
||||||
|
|
||||||
typedef void (*caller_t)(const oclMat & query, const oclMat & train, float maxDistance, const oclMat & mask,
|
// match1 doesn't support signed char type, match2 only support float, hamming support uchar, ushort and int
|
||||||
const oclMat & trainIdx, const oclMat & distance, const oclMat & nMatches);
|
int callType = query.depth();
|
||||||
|
char cvFuncName[] = "radiusMatchSingle";
|
||||||
|
if (callType != 5)
|
||||||
|
CV_ERROR(CV_UNSUPPORTED_FORMAT_ERR, "BruteForceMatch OpenCL only support float type query!\n");
|
||||||
|
|
||||||
//#if 0
|
if ((distType == 0 && callType == 1 ) || (distType == 1 && callType != 5) || (distType == 2 && (callType != 0
|
||||||
static const caller_t callers[3][6] =
|
|| callType != 2 || callType != 4)))
|
||||||
{
|
{
|
||||||
{
|
CV_ERROR(CV_UNSUPPORTED_DEPTH_ERR, "BruteForceMatch OpenCL only support float type query!\n");
|
||||||
ocl_matchL1_gpu<unsigned char>, 0/*ocl_matchL1_gpu<signed char>*/,
|
}
|
||||||
ocl_matchL1_gpu<unsigned short>, ocl_matchL1_gpu<short>,
|
|
||||||
ocl_matchL1_gpu<int>, ocl_matchL1_gpu<float>
|
|
||||||
},
|
|
||||||
{
|
|
||||||
0/*ocl_matchL2_gpu<unsigned char>*/, 0/*ocl_matchL2_gpu<signed char>*/,
|
|
||||||
0/*ocl_matchL2_gpu<unsigned short>*/, 0/*ocl_matchL2_gpu<short>*/,
|
|
||||||
0/*ocl_matchL2_gpu<int>*/, ocl_matchL2_gpu<float>
|
|
||||||
},
|
|
||||||
{
|
|
||||||
ocl_matchHamming_gpu<unsigned char>, 0/*ocl_matchHamming_gpu<signed char>*/,
|
|
||||||
ocl_matchHamming_gpu<unsigned short>, 0/*ocl_matchHamming_gpu<short>*/,
|
|
||||||
ocl_matchHamming_gpu<int>, 0/*ocl_matchHamming_gpu<float>*/
|
|
||||||
}
|
|
||||||
};
|
|
||||||
//#endif
|
|
||||||
|
|
||||||
const int nQuery = query.rows;
|
|
||||||
const int nTrain = train.rows;
|
|
||||||
|
|
||||||
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
|
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
|
||||||
CV_Assert(train.type() == query.type() && train.cols == query.cols);
|
CV_Assert(train.type() == query.type() && train.cols == query.cols);
|
||||||
CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size()));
|
CV_Assert(trainIdx.empty() || (trainIdx.rows == query.rows && trainIdx.size() == distance.size()));
|
||||||
|
|
||||||
nMatches.create(1, nQuery, CV_32SC1);
|
nMatches.create(1, query.rows, CV_32SC1);
|
||||||
if (trainIdx.empty())
|
if (trainIdx.empty())
|
||||||
{
|
{
|
||||||
trainIdx.create(nQuery, std::max((nTrain / 100), 10), CV_32SC1);
|
trainIdx.create(query.rows, std::max((train.rows/ 100), 10), CV_32SC1);
|
||||||
distance.create(nQuery, std::max((nTrain / 100), 10), CV_32FC1);
|
distance.create(query.rows, std::max((train.rows/ 100), 10), CV_32FC1);
|
||||||
}
|
}
|
||||||
|
|
||||||
nMatches.setTo(Scalar::all(0));
|
nMatches.setTo(Scalar::all(0));
|
||||||
|
|
||||||
caller_t func = callers[distType][query.depth()];
|
matchDispatcher(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
|
||||||
//CV_Assert(func != 0);
|
exit:
|
||||||
//func(query, train, maxDistance, mask, trainIdx, distance, nMatches, cc, StreamAccessor::getStream(stream));
|
return;
|
||||||
func(query, train, maxDistance, mask, trainIdx, distance, nMatches);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchDownload(const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches,
|
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchDownload(const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches,
|
||||||
@ -1697,5 +1245,3 @@ void cv::ocl::BruteForceMatcher_OCL_base::radiusMatch(const oclMat &query, vecto
|
|||||||
radiusMatchCollection(query, trainIdx, imgIdx, distance, nMatches, maxDistance, masks);
|
radiusMatchCollection(query, trainIdx, imgIdx, distance, nMatches, maxDistance, masks);
|
||||||
radiusMatchDownload(trainIdx, imgIdx, distance, nMatches, matches, compactResult);
|
radiusMatchDownload(trainIdx, imgIdx, distance, nMatches, matches, compactResult);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -953,8 +953,8 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
|
|||||||
//int flag = 0;
|
//int flag = 0;
|
||||||
|
|
||||||
oclMat gimg1(gimg.rows, gimg.cols, CV_8UC1);
|
oclMat gimg1(gimg.rows, gimg.cols, CV_8UC1);
|
||||||
oclMat gsum(totalheight, gimg.cols + 1, CV_32SC1);
|
oclMat gsum(totalheight + 4, gimg.cols + 1, CV_32SC1);
|
||||||
oclMat gsqsum(totalheight, gimg.cols + 1, CV_32FC1);
|
oclMat gsqsum(totalheight + 4, gimg.cols + 1, CV_32FC1);
|
||||||
|
|
||||||
//cl_mem cascadebuffer;
|
//cl_mem cascadebuffer;
|
||||||
cl_mem stagebuffer;
|
cl_mem stagebuffer;
|
||||||
|
@ -106,7 +106,7 @@ static void icvContourMoments( CvSeq* contour, CvMoments* mom )
|
|||||||
|
|
||||||
bool is_float = CV_SEQ_ELTYPE(contour) == CV_32FC2;
|
bool is_float = CV_SEQ_ELTYPE(contour) == CV_32FC2;
|
||||||
|
|
||||||
if (!cv::ocl::Context::getContext()->impl->double_support && is_float)
|
if (!cv::ocl::Context::getContext()->supportsFeature(Context::CL_DOUBLE) && is_float)
|
||||||
{
|
{
|
||||||
CV_Error(CV_StsUnsupportedFormat, "Moments - double is not supported by your GPU!");
|
CV_Error(CV_StsUnsupportedFormat, "Moments - double is not supported by your GPU!");
|
||||||
}
|
}
|
||||||
@ -146,7 +146,7 @@ static void icvContourMoments( CvSeq* contour, CvMoments* mom )
|
|||||||
|
|
||||||
cv::Mat dst(dst_a);
|
cv::Mat dst(dst_a);
|
||||||
a00 = a10 = a01 = a20 = a11 = a02 = a30 = a21 = a12 = a03 = 0.0;
|
a00 = a10 = a01 = a20 = a11 = a02 = a30 = a21 = a12 = a03 = 0.0;
|
||||||
if (!cv::ocl::Context::getContext()->impl->double_support)
|
if (!cv::ocl::Context::getContext()->supportsFeature(Context::CL_DOUBLE))
|
||||||
{
|
{
|
||||||
for (int i = 0; i < contour->total; ++i)
|
for (int i = 0; i < contour->total; ++i)
|
||||||
{
|
{
|
||||||
|
@ -5,19 +5,93 @@ int bit1Count(float x)
|
|||||||
{
|
{
|
||||||
int c = 0;
|
int c = 0;
|
||||||
int ix = (int)x;
|
int ix = (int)x;
|
||||||
|
|
||||||
for (int i = 0 ; i < 32 ; i++)
|
for (int i = 0 ; i < 32 ; i++)
|
||||||
{
|
{
|
||||||
c += ix & 0x1;
|
c += ix & 0x1;
|
||||||
ix >>= 1;
|
ix >>= 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
return (float)c;
|
return (float)c;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
float reduce_block(__local float *s_query,
|
||||||
|
__local float *s_train,
|
||||||
|
int block_size,
|
||||||
|
int lidx,
|
||||||
|
int lidy,
|
||||||
|
int distType
|
||||||
|
)
|
||||||
|
{
|
||||||
|
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
||||||
|
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
||||||
|
float result = 0;
|
||||||
|
switch(distType)
|
||||||
|
{
|
||||||
|
case 0:
|
||||||
|
for (int j = 0 ; j < block_size ; j++)
|
||||||
|
{
|
||||||
|
result += fabs(s_query[lidy * block_size + j] - s_train[j * block_size + lidx]);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 1:
|
||||||
|
for (int j = 0 ; j < block_size ; j++)
|
||||||
|
{
|
||||||
|
float qr = s_query[lidy * block_size + j] - s_train[j * block_size + lidx];
|
||||||
|
result += qr * qr;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
for (int j = 0 ; j < block_size ; j++)
|
||||||
|
{
|
||||||
|
result += bit1Count((uint)s_query[lidy * block_size + j] ^ (uint)s_train[(uint)j * block_size + lidx]);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
float reduce_multi_block(__local float *s_query,
|
||||||
|
__local float *s_train,
|
||||||
|
int max_desc_len,
|
||||||
|
int block_size,
|
||||||
|
int block_index,
|
||||||
|
int lidx,
|
||||||
|
int lidy,
|
||||||
|
int distType
|
||||||
|
)
|
||||||
|
{
|
||||||
|
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
||||||
|
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
||||||
|
float result = 0;
|
||||||
|
switch(distType)
|
||||||
|
{
|
||||||
|
case 0:
|
||||||
|
for (int j = 0 ; j < block_size ; j++)
|
||||||
|
{
|
||||||
|
result += fabs(s_query[lidy * max_desc_len + block_index * block_size + j] - s_train[j * block_size + lidx]);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 1:
|
||||||
|
for (int j = 0 ; j < block_size ; j++)
|
||||||
|
{
|
||||||
|
float qr = s_query[lidy * max_desc_len + block_index * block_size + j] - s_train[j * block_size + lidx];
|
||||||
|
result += qr * qr;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
for (int j = 0 ; j < block_size ; j++)
|
||||||
|
{
|
||||||
|
//result += popcount((uint)s_query[lidy * max_desc_len + block_index * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
|
||||||
|
result += bit1Count((uint)s_query[lidy * max_desc_len + block_index * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
/* 2dim launch, global size: dim0 is (query rows + block_size - 1) / block_size * block_size, dim1 is block_size
|
/* 2dim launch, global size: dim0 is (query rows + block_size - 1) / block_size * block_size, dim1 is block_size
|
||||||
local size: dim0 is block_size, dim1 is block_size.
|
local size: dim0 is block_size, dim1 is block_size.
|
||||||
*/
|
*/
|
||||||
__kernel void BruteForceMatch_UnrollMatch(
|
__kernel void BruteForceMatch_UnrollMatch_D5(
|
||||||
__global float *query,
|
__global float *query,
|
||||||
__global float *train,
|
__global float *train,
|
||||||
//__global float *mask,
|
//__global float *mask,
|
||||||
@ -42,7 +116,6 @@ __kernel void BruteForceMatch_UnrollMatch(
|
|||||||
__local float *s_train = sharebuffer + block_size * max_desc_len;
|
__local float *s_train = sharebuffer + block_size * max_desc_len;
|
||||||
|
|
||||||
int queryIdx = groupidx * block_size + lidy;
|
int queryIdx = groupidx * block_size + lidy;
|
||||||
|
|
||||||
// load the query into local memory.
|
// load the query into local memory.
|
||||||
for (int i = 0 ; i < max_desc_len / block_size; i ++)
|
for (int i = 0 ; i < max_desc_len / block_size; i ++)
|
||||||
{
|
{
|
||||||
@ -55,11 +128,9 @@ __kernel void BruteForceMatch_UnrollMatch(
|
|||||||
|
|
||||||
// loopUnrolledCached to find the best trainIdx and best distance.
|
// loopUnrolledCached to find the best trainIdx and best distance.
|
||||||
volatile int imgIdx = 0;
|
volatile int imgIdx = 0;
|
||||||
|
|
||||||
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
|
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
|
||||||
{
|
{
|
||||||
float result = 0;
|
float result = 0;
|
||||||
|
|
||||||
for (int i = 0 ; i < max_desc_len / block_size ; i++)
|
for (int i = 0 ; i < max_desc_len / block_size ; i++)
|
||||||
{
|
{
|
||||||
//load a block_size * block_size block into local train.
|
//load a block_size * block_size block into local train.
|
||||||
@ -69,38 +140,7 @@ __kernel void BruteForceMatch_UnrollMatch(
|
|||||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
|
|
||||||
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
result += reduce_multi_block(s_query, s_train, max_desc_len, block_size, i, lidx, lidy, distType);
|
||||||
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
|
||||||
|
|
||||||
switch (distType)
|
|
||||||
{
|
|
||||||
case 0:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; j++)
|
|
||||||
{
|
|
||||||
result += fabs(s_query[lidy * max_desc_len + i * block_size + j] - s_train[j * block_size + lidx]);
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
case 1:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; j++)
|
|
||||||
{
|
|
||||||
float qr = s_query[lidy * max_desc_len + i * block_size + j] - s_train[j * block_size + lidx];
|
|
||||||
result += qr * qr;
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
case 2:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; j++)
|
|
||||||
{
|
|
||||||
//result += popcount((uint)s_query[lidy * max_desc_len + i * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
|
|
||||||
result += bit1Count((uint)s_query[lidy * max_desc_len + i * block_size + j] ^(uint)s_train[j * block_size + lidx]);
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
}
|
}
|
||||||
@ -116,8 +156,8 @@ __kernel void BruteForceMatch_UnrollMatch(
|
|||||||
}
|
}
|
||||||
|
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
__local float *s_distance = (__local float *)(sharebuffer);
|
__local float *s_distance = (__local float*)(sharebuffer);
|
||||||
__local int *s_trainIdx = (__local int *)(sharebuffer + block_size * block_size);
|
__local int* s_trainIdx = (__local int *)(sharebuffer + block_size * block_size);
|
||||||
|
|
||||||
//find BestMatch
|
//find BestMatch
|
||||||
s_distance += lidy * block_size;
|
s_distance += lidy * block_size;
|
||||||
@ -144,7 +184,7 @@ __kernel void BruteForceMatch_UnrollMatch(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
__kernel void BruteForceMatch_Match(
|
__kernel void BruteForceMatch_Match_D5(
|
||||||
__global float *query,
|
__global float *query,
|
||||||
__global float *train,
|
__global float *train,
|
||||||
//__global float *mask,
|
//__global float *mask,
|
||||||
@ -177,7 +217,6 @@ __kernel void BruteForceMatch_Match(
|
|||||||
{
|
{
|
||||||
//Dist dist;
|
//Dist dist;
|
||||||
float result = 0;
|
float result = 0;
|
||||||
|
|
||||||
for (int i = 0 ; i < (query_cols + block_size - 1) / block_size ; i++)
|
for (int i = 0 ; i < (query_cols + block_size - 1) / block_size ; i++)
|
||||||
{
|
{
|
||||||
const int loadx = lidx + i * block_size;
|
const int loadx = lidx + i * block_size;
|
||||||
@ -193,38 +232,7 @@ __kernel void BruteForceMatch_Match(
|
|||||||
|
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
|
|
||||||
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
result += reduce_block(s_query, s_train, block_size, lidx, lidy, distType);
|
||||||
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
|
||||||
|
|
||||||
switch (distType)
|
|
||||||
{
|
|
||||||
case 0:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; j++)
|
|
||||||
{
|
|
||||||
result += fabs(s_query[lidy * block_size + j] - s_train[j * block_size + lidx]);
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
case 1:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; j++)
|
|
||||||
{
|
|
||||||
float qr = s_query[lidy * block_size + j] - s_train[j * block_size + lidx];
|
|
||||||
result += qr * qr;
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
case 2:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; j++)
|
|
||||||
{
|
|
||||||
//result += popcount((uint)s_query[lidy * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
|
|
||||||
result += bit1Count((uint)s_query[lidy * block_size + j] ^(uint)s_train[(uint)j * block_size + lidx]);
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
}
|
}
|
||||||
@ -270,7 +278,7 @@ __kernel void BruteForceMatch_Match(
|
|||||||
}
|
}
|
||||||
|
|
||||||
//radius_unrollmatch
|
//radius_unrollmatch
|
||||||
__kernel void BruteForceMatch_RadiusUnrollMatch(
|
__kernel void BruteForceMatch_RadiusUnrollMatch_D5(
|
||||||
__global float *query,
|
__global float *query,
|
||||||
__global float *train,
|
__global float *train,
|
||||||
float maxDistance,
|
float maxDistance,
|
||||||
@ -303,7 +311,6 @@ __kernel void BruteForceMatch_RadiusUnrollMatch(
|
|||||||
__local float *s_train = sharebuffer + block_size * block_size;
|
__local float *s_train = sharebuffer + block_size * block_size;
|
||||||
|
|
||||||
float result = 0;
|
float result = 0;
|
||||||
|
|
||||||
for (int i = 0 ; i < max_desc_len / block_size ; ++i)
|
for (int i = 0 ; i < max_desc_len / block_size ; ++i)
|
||||||
{
|
{
|
||||||
//load a block_size * block_size block into local train.
|
//load a block_size * block_size block into local train.
|
||||||
@ -315,37 +322,7 @@ __kernel void BruteForceMatch_RadiusUnrollMatch(
|
|||||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
|
|
||||||
/* there are three types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
result += reduce_block(s_query, s_train, block_size, lidx, lidy, distType);
|
||||||
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
|
||||||
|
|
||||||
switch (distType)
|
|
||||||
{
|
|
||||||
case 0:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; ++j)
|
|
||||||
{
|
|
||||||
result += fabs(s_query[lidy * block_size + j] - s_train[j * block_size + lidx]);
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
case 1:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; ++j)
|
|
||||||
{
|
|
||||||
float qr = s_query[lidy * block_size + j] - s_train[j * block_size + lidx];
|
|
||||||
result += qr * qr;
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
case 2:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; ++j)
|
|
||||||
{
|
|
||||||
result += bit1Count((uint)s_query[lidy * block_size + j] ^(uint)s_train[j * block_size + lidx]);
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
}
|
}
|
||||||
@ -354,7 +331,7 @@ __kernel void BruteForceMatch_RadiusUnrollMatch(
|
|||||||
{
|
{
|
||||||
unsigned int ind = atom_inc(nMatches + queryIdx/*, (unsigned int) -1*/);
|
unsigned int ind = atom_inc(nMatches + queryIdx/*, (unsigned int) -1*/);
|
||||||
|
|
||||||
if (ind < bestTrainIdx_cols)
|
if(ind < bestTrainIdx_cols)
|
||||||
{
|
{
|
||||||
//bestImgIdx = imgIdx;
|
//bestImgIdx = imgIdx;
|
||||||
bestTrainIdx[queryIdx * (ostep / sizeof(int)) + ind] = trainIdx;
|
bestTrainIdx[queryIdx * (ostep / sizeof(int)) + ind] = trainIdx;
|
||||||
@ -364,7 +341,7 @@ __kernel void BruteForceMatch_RadiusUnrollMatch(
|
|||||||
}
|
}
|
||||||
|
|
||||||
//radius_match
|
//radius_match
|
||||||
__kernel void BruteForceMatch_RadiusMatch(
|
__kernel void BruteForceMatch_RadiusMatch_D5(
|
||||||
__global float *query,
|
__global float *query,
|
||||||
__global float *train,
|
__global float *train,
|
||||||
float maxDistance,
|
float maxDistance,
|
||||||
@ -396,7 +373,6 @@ __kernel void BruteForceMatch_RadiusMatch(
|
|||||||
__local float *s_train = sharebuffer + block_size * block_size;
|
__local float *s_train = sharebuffer + block_size * block_size;
|
||||||
|
|
||||||
float result = 0;
|
float result = 0;
|
||||||
|
|
||||||
for (int i = 0 ; i < (query_cols + block_size - 1) / block_size ; ++i)
|
for (int i = 0 ; i < (query_cols + block_size - 1) / block_size ; ++i)
|
||||||
{
|
{
|
||||||
//load a block_size * block_size block into local train.
|
//load a block_size * block_size block into local train.
|
||||||
@ -408,46 +384,16 @@ __kernel void BruteForceMatch_RadiusMatch(
|
|||||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
|
|
||||||
/* there are three types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
result += reduce_block(s_query, s_train, block_size, lidx, lidy, distType);
|
||||||
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
|
||||||
|
|
||||||
switch (distType)
|
|
||||||
{
|
|
||||||
case 0:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; ++j)
|
|
||||||
{
|
|
||||||
result += fabs(s_query[lidy * block_size + j] - s_train[j * block_size + lidx]);
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
case 1:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; ++j)
|
|
||||||
{
|
|
||||||
float qr = s_query[lidy * block_size + j] - s_train[j * block_size + lidx];
|
|
||||||
result += qr * qr;
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
case 2:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; ++j)
|
|
||||||
{
|
|
||||||
result += bit1Count((uint)s_query[lidy * block_size + j] ^(uint)s_train[j * block_size + lidx]);
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (queryIdx < query_rows && trainIdx < train_rows && result < maxDistance/* && mask(queryIdx, trainIdx)*/)
|
if (queryIdx < query_rows && trainIdx < train_rows && result < maxDistance/* && mask(queryIdx, trainIdx)*/)
|
||||||
{
|
{
|
||||||
unsigned int ind = atom_inc(nMatches + queryIdx/*, (unsigned int) -1*/);
|
unsigned int ind = atom_inc(nMatches + queryIdx);
|
||||||
|
|
||||||
if (ind < bestTrainIdx_cols)
|
if(ind < bestTrainIdx_cols)
|
||||||
{
|
{
|
||||||
//bestImgIdx = imgIdx;
|
//bestImgIdx = imgIdx;
|
||||||
bestTrainIdx[queryIdx * (ostep / sizeof(int)) + ind] = trainIdx;
|
bestTrainIdx[queryIdx * (ostep / sizeof(int)) + ind] = trainIdx;
|
||||||
@ -457,7 +403,7 @@ __kernel void BruteForceMatch_RadiusMatch(
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
__kernel void BruteForceMatch_knnUnrollMatch(
|
__kernel void BruteForceMatch_knnUnrollMatch_D5(
|
||||||
__global float *query,
|
__global float *query,
|
||||||
__global float *train,
|
__global float *train,
|
||||||
//__global float *mask,
|
//__global float *mask,
|
||||||
@ -496,11 +442,9 @@ __kernel void BruteForceMatch_knnUnrollMatch(
|
|||||||
|
|
||||||
//loopUnrolledCached
|
//loopUnrolledCached
|
||||||
volatile int imgIdx = 0;
|
volatile int imgIdx = 0;
|
||||||
|
|
||||||
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
|
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
|
||||||
{
|
{
|
||||||
float result = 0;
|
float result = 0;
|
||||||
|
|
||||||
for (int i = 0 ; i < max_desc_len / block_size ; i++)
|
for (int i = 0 ; i < max_desc_len / block_size ; i++)
|
||||||
{
|
{
|
||||||
const int loadX = lidx + i * block_size;
|
const int loadX = lidx + i * block_size;
|
||||||
@ -511,38 +455,7 @@ __kernel void BruteForceMatch_knnUnrollMatch(
|
|||||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
|
|
||||||
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
result += reduce_multi_block(s_query, s_train, max_desc_len, block_size, i, lidx, lidy, distType);
|
||||||
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
|
||||||
|
|
||||||
switch (distType)
|
|
||||||
{
|
|
||||||
case 0:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; j++)
|
|
||||||
{
|
|
||||||
result += fabs(s_query[lidy * max_desc_len + i * block_size + j] - s_train[j * block_size + lidx]);
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
case 1:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; j++)
|
|
||||||
{
|
|
||||||
float qr = s_query[lidy * max_desc_len + i * block_size + j] - s_train[j * block_size + lidx];
|
|
||||||
result += qr * qr;
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
case 2:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; j++)
|
|
||||||
{
|
|
||||||
//result += popcount((uint)s_query[lidy * max_desc_len + i * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
|
|
||||||
result += bit1Count((uint)s_query[lidy * max_desc_len + i * block_size + j] ^(uint)s_train[j * block_size + lidx]);
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
}
|
}
|
||||||
@ -589,7 +502,6 @@ __kernel void BruteForceMatch_knnUnrollMatch(
|
|||||||
for (int i = 0 ; i < block_size ; i++)
|
for (int i = 0 ; i < block_size ; i++)
|
||||||
{
|
{
|
||||||
float val = s_distance[i];
|
float val = s_distance[i];
|
||||||
|
|
||||||
if (val < bestDistance1)
|
if (val < bestDistance1)
|
||||||
{
|
{
|
||||||
bestDistance2 = bestDistance1;
|
bestDistance2 = bestDistance1;
|
||||||
@ -640,7 +552,7 @@ __kernel void BruteForceMatch_knnUnrollMatch(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
__kernel void BruteForceMatch_knnMatch(
|
__kernel void BruteForceMatch_knnMatch_D5(
|
||||||
__global float *query,
|
__global float *query,
|
||||||
__global float *train,
|
__global float *train,
|
||||||
//__global float *mask,
|
//__global float *mask,
|
||||||
@ -673,8 +585,7 @@ __kernel void BruteForceMatch_knnMatch(
|
|||||||
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
|
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
|
||||||
{
|
{
|
||||||
float result = 0.0f;
|
float result = 0.0f;
|
||||||
|
for (int i = 0 ; i < (query_cols + block_size -1) / block_size ; i++)
|
||||||
for (int i = 0 ; i < (query_cols + block_size - 1) / block_size ; i++)
|
|
||||||
{
|
{
|
||||||
const int loadx = lidx + i * block_size;
|
const int loadx = lidx + i * block_size;
|
||||||
//load query and train into local memory
|
//load query and train into local memory
|
||||||
@ -689,38 +600,7 @@ __kernel void BruteForceMatch_knnMatch(
|
|||||||
|
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
|
|
||||||
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
result += reduce_block(s_query, s_train, block_size, lidx, lidy, distType);
|
||||||
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
|
||||||
|
|
||||||
switch (distType)
|
|
||||||
{
|
|
||||||
case 0:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; j++)
|
|
||||||
{
|
|
||||||
result += fabs(s_query[lidy * block_size + j] - s_train[j * block_size + lidx]);
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
case 1:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; j++)
|
|
||||||
{
|
|
||||||
float qr = s_query[lidy * block_size + j] - s_train[j * block_size + lidx];
|
|
||||||
result += qr * qr;
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
case 2:
|
|
||||||
|
|
||||||
for (int j = 0 ; j < block_size ; j++)
|
|
||||||
{
|
|
||||||
//result += popcount((uint)s_query[lidy * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
|
|
||||||
result += bit1Count((uint)s_query[lidy * block_size + j] ^(uint)s_train[(uint)j * block_size + lidx]);
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
}
|
}
|
||||||
@ -767,7 +647,6 @@ __kernel void BruteForceMatch_knnMatch(
|
|||||||
for (int i = 0 ; i < block_size ; i++)
|
for (int i = 0 ; i < block_size ; i++)
|
||||||
{
|
{
|
||||||
float val = s_distance[i];
|
float val = s_distance[i];
|
||||||
|
|
||||||
if (val < bestDistance1)
|
if (val < bestDistance1)
|
||||||
{
|
{
|
||||||
bestDistance2 = bestDistance1;
|
bestDistance2 = bestDistance1;
|
||||||
@ -818,7 +697,7 @@ __kernel void BruteForceMatch_knnMatch(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void BruteForceMatch_calcDistanceUnrolled(
|
kernel void BruteForceMatch_calcDistanceUnrolled_D5(
|
||||||
__global float *query,
|
__global float *query,
|
||||||
__global float *train,
|
__global float *train,
|
||||||
//__global float *mask,
|
//__global float *mask,
|
||||||
@ -836,7 +715,7 @@ kernel void BruteForceMatch_calcDistanceUnrolled(
|
|||||||
/* Todo */
|
/* Todo */
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void BruteForceMatch_calcDistance(
|
kernel void BruteForceMatch_calcDistance_D5(
|
||||||
__global float *query,
|
__global float *query,
|
||||||
__global float *train,
|
__global float *train,
|
||||||
//__global float *mask,
|
//__global float *mask,
|
||||||
@ -853,7 +732,7 @@ kernel void BruteForceMatch_calcDistance(
|
|||||||
/* Todo */
|
/* Todo */
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void BruteForceMatch_findBestMatch(
|
kernel void BruteForceMatch_findBestMatch_D5(
|
||||||
__global float *allDist,
|
__global float *allDist,
|
||||||
__global int *bestTrainIdx,
|
__global int *bestTrainIdx,
|
||||||
__global float *bestDistance,
|
__global float *bestDistance,
|
||||||
|
@ -211,10 +211,14 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
|||||||
int4 data = *(__global int4*)&sum[glb_off];
|
int4 data = *(__global int4*)&sum[glb_off];
|
||||||
int lcl_off = mad24(lcl_y, readwidth, lcl_x<<2);
|
int lcl_off = mad24(lcl_y, readwidth, lcl_x<<2);
|
||||||
|
|
||||||
|
#if OFF
|
||||||
lcldata[lcl_off] = data.x;
|
lcldata[lcl_off] = data.x;
|
||||||
lcldata[lcl_off+1] = data.y;
|
lcldata[lcl_off+1] = data.y;
|
||||||
lcldata[lcl_off+2] = data.z;
|
lcldata[lcl_off+2] = data.z;
|
||||||
lcldata[lcl_off+3] = data.w;
|
lcldata[lcl_off+3] = data.w;
|
||||||
|
#else
|
||||||
|
vstore4(data, 0, &lcldata[lcl_off]);
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
lcloutindex[lcl_id] = 0;
|
lcloutindex[lcl_id] = 0;
|
||||||
@ -559,3 +563,7 @@ if(result)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -110,7 +110,7 @@ namespace
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
TEST_P(BruteForceMatcher, DISABLED_Match_Single)
|
TEST_P(BruteForceMatcher, Match_Single)
|
||||||
{
|
{
|
||||||
cv::ocl::BruteForceMatcher_OCL_base matcher(distType);
|
cv::ocl::BruteForceMatcher_OCL_base matcher(distType);
|
||||||
|
|
||||||
@ -130,7 +130,7 @@ namespace
|
|||||||
ASSERT_EQ(0, badCount);
|
ASSERT_EQ(0, badCount);
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST_P(BruteForceMatcher, DISABLED_KnnMatch_2_Single)
|
TEST_P(BruteForceMatcher, KnnMatch_2_Single)
|
||||||
{
|
{
|
||||||
const int knn = 2;
|
const int knn = 2;
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user