a big patch; use special proxy types (Input/OutputArray, Input/OutputArrayOfArrays) for passing in vectors, matrices etc.
This commit is contained in:
@@ -61,7 +61,7 @@ namespace cv
|
||||
//! various border interpolation methods
|
||||
enum { BORDER_REPLICATE=IPL_BORDER_REPLICATE, BORDER_CONSTANT=IPL_BORDER_CONSTANT,
|
||||
BORDER_REFLECT=IPL_BORDER_REFLECT, BORDER_WRAP=IPL_BORDER_WRAP,
|
||||
BORDER_REFLECT_101=IPL_BORDER_REFLECT_101, BORDER_REFLECT101=BORDER_REFLECT_101,
|
||||
BORDER_REFLECT_101=IPL_BORDER_REFLECT_101, BORDER_REFLECT101=BORDER_REFLECT_101,
|
||||
BORDER_TRANSPARENT=IPL_BORDER_TRANSPARENT,
|
||||
BORDER_DEFAULT=BORDER_REFLECT_101, BORDER_ISOLATED=16 };
|
||||
|
||||
@@ -287,28 +287,28 @@ enum { KERNEL_GENERAL=0, KERNEL_SYMMETRICAL=1, KERNEL_ASYMMETRICAL=2,
|
||||
KERNEL_SMOOTH=4, KERNEL_INTEGER=8 };
|
||||
|
||||
//! returns type (one of KERNEL_*) of 1D or 2D kernel specified by its coefficients.
|
||||
CV_EXPORTS int getKernelType(const Mat& kernel, Point anchor);
|
||||
CV_EXPORTS int getKernelType(const InputArray& kernel, Point anchor);
|
||||
|
||||
//! returns the primitive row filter with the specified kernel
|
||||
CV_EXPORTS Ptr<BaseRowFilter> getLinearRowFilter(int srcType, int bufType,
|
||||
const Mat& kernel, int anchor,
|
||||
const InputArray& kernel, int anchor,
|
||||
int symmetryType);
|
||||
|
||||
//! returns the primitive column filter with the specified kernel
|
||||
CV_EXPORTS Ptr<BaseColumnFilter> getLinearColumnFilter(int bufType, int dstType,
|
||||
const Mat& kernel, int anchor,
|
||||
const InputArray& kernel, int anchor,
|
||||
int symmetryType, double delta=0,
|
||||
int bits=0);
|
||||
|
||||
//! returns 2D filter with the specified kernel
|
||||
CV_EXPORTS Ptr<BaseFilter> getLinearFilter(int srcType, int dstType,
|
||||
const Mat& kernel,
|
||||
const InputArray& kernel,
|
||||
Point anchor=Point(-1,-1),
|
||||
double delta=0, int bits=0);
|
||||
|
||||
//! returns the separable linear filter engine
|
||||
CV_EXPORTS Ptr<FilterEngine> createSeparableLinearFilter(int srcType, int dstType,
|
||||
const Mat& rowKernel, const Mat& columnKernel,
|
||||
const InputArray& rowKernel, const InputArray& columnKernel,
|
||||
Point _anchor=Point(-1,-1), double delta=0,
|
||||
int _rowBorderType=BORDER_DEFAULT,
|
||||
int _columnBorderType=-1,
|
||||
@@ -316,7 +316,7 @@ CV_EXPORTS Ptr<FilterEngine> createSeparableLinearFilter(int srcType, int dstTyp
|
||||
|
||||
//! returns the non-separable linear filter engine
|
||||
CV_EXPORTS Ptr<FilterEngine> createLinearFilter(int srcType, int dstType,
|
||||
const Mat& kernel, Point _anchor=Point(-1,-1),
|
||||
const InputArray& kernel, Point _anchor=Point(-1,-1),
|
||||
double delta=0, int _rowBorderType=BORDER_DEFAULT,
|
||||
int _columnBorderType=-1, const Scalar& _borderValue=Scalar());
|
||||
|
||||
@@ -328,9 +328,9 @@ CV_EXPORTS Ptr<FilterEngine> createGaussianFilter( int type, Size ksize,
|
||||
double sigma1, double sigma2=0,
|
||||
int borderType=BORDER_DEFAULT);
|
||||
//! initializes kernels of the generalized Sobel operator
|
||||
CV_EXPORTS_W void getDerivKernels( CV_OUT Mat& kx, CV_OUT Mat& ky,
|
||||
int dx, int dy, int ksize,
|
||||
bool normalize=false, int ktype=CV_32F );
|
||||
CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky,
|
||||
int dx, int dy, int ksize,
|
||||
bool normalize=false, int ktype=CV_32F );
|
||||
//! returns filter engine for the generalized Sobel operator
|
||||
CV_EXPORTS Ptr<FilterEngine> createDerivFilter( int srcType, int dstType,
|
||||
int dx, int dy, int ksize,
|
||||
@@ -358,14 +358,14 @@ CV_EXPORTS Ptr<BaseRowFilter> getMorphologyRowFilter(int op, int type, int ksize
|
||||
//! returns vertical 1D morphological filter
|
||||
CV_EXPORTS Ptr<BaseColumnFilter> getMorphologyColumnFilter(int op, int type, int ksize, int anchor=-1);
|
||||
//! returns 2D morphological filter
|
||||
CV_EXPORTS Ptr<BaseFilter> getMorphologyFilter(int op, int type, const Mat& kernel,
|
||||
CV_EXPORTS Ptr<BaseFilter> getMorphologyFilter(int op, int type, const InputArray& kernel,
|
||||
Point anchor=Point(-1,-1));
|
||||
|
||||
//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
|
||||
static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); }
|
||||
|
||||
//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
|
||||
CV_EXPORTS Ptr<FilterEngine> createMorphologyFilter(int op, int type, const Mat& kernel,
|
||||
CV_EXPORTS Ptr<FilterEngine> createMorphologyFilter(int op, int type, const InputArray& kernel,
|
||||
Point anchor=Point(-1,-1), int _rowBorderType=BORDER_CONSTANT,
|
||||
int _columnBorderType=-1,
|
||||
const Scalar& _borderValue=morphologyDefaultBorderValue());
|
||||
@@ -378,126 +378,127 @@ CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor=Point
|
||||
template<> CV_EXPORTS void Ptr<IplConvKernel>::delete_obj();
|
||||
|
||||
//! copies 2D array to a larger destination array with extrapolation of the outer part of src using the specified border mode
|
||||
CV_EXPORTS_W void copyMakeBorder( const Mat& src, CV_OUT Mat& dst,
|
||||
CV_EXPORTS_W void copyMakeBorder( const InputArray& src, OutputArray dst,
|
||||
int top, int bottom, int left, int right,
|
||||
int borderType, const Scalar& value=Scalar() );
|
||||
|
||||
//! smooths the image using median filter.
|
||||
CV_EXPORTS_W void medianBlur( const Mat& src, CV_OUT Mat& dst, int ksize );
|
||||
CV_EXPORTS_W void medianBlur( const InputArray& src, OutputArray dst, int ksize );
|
||||
//! smooths the image using Gaussian filter.
|
||||
CV_EXPORTS_AS(gaussianBlur) void GaussianBlur( const Mat& src, CV_OUT Mat& dst, Size ksize,
|
||||
double sigma1, double sigma2=0,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
CV_EXPORTS_AS(gaussianBlur) void GaussianBlur( const InputArray& src,
|
||||
OutputArray dst, Size ksize,
|
||||
double sigma1, double sigma2=0,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
//! smooths the image using bilateral filter
|
||||
CV_EXPORTS_W void bilateralFilter( const Mat& src, CV_OUT Mat& dst, int d,
|
||||
double sigmaColor, double sigmaSpace,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
CV_EXPORTS_W void bilateralFilter( const InputArray& src, OutputArray dst, int d,
|
||||
double sigmaColor, double sigmaSpace,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
//! smooths the image using the box filter. Each pixel is processed in O(1) time
|
||||
CV_EXPORTS_W void boxFilter( const Mat& src, CV_OUT Mat& dst, int ddepth,
|
||||
Size ksize, Point anchor=Point(-1,-1),
|
||||
bool normalize=true,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
CV_EXPORTS_W void boxFilter( const InputArray& src, OutputArray dst, int ddepth,
|
||||
Size ksize, Point anchor=Point(-1,-1),
|
||||
bool normalize=true,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
//! a synonym for normalized box filter
|
||||
CV_EXPORTS_W void blur( const Mat& src, CV_OUT Mat& dst,
|
||||
CV_EXPORTS_W void blur( const InputArray& src, OutputArray dst,
|
||||
Size ksize, Point anchor=Point(-1,-1),
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! applies non-separable 2D linear filter to the image
|
||||
CV_EXPORTS_W void filter2D( const Mat& src, CV_OUT Mat& dst, int ddepth,
|
||||
const Mat& kernel, Point anchor=Point(-1,-1),
|
||||
double delta=0, int borderType=BORDER_DEFAULT );
|
||||
CV_EXPORTS_W void filter2D( const InputArray& src, OutputArray dst, int ddepth,
|
||||
const InputArray& kernel, Point anchor=Point(-1,-1),
|
||||
double delta=0, int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! applies separable 2D linear filter to the image
|
||||
CV_EXPORTS_W void sepFilter2D( const Mat& src, CV_OUT Mat& dst, int ddepth,
|
||||
const Mat& kernelX, const Mat& kernelY,
|
||||
Point anchor=Point(-1,-1),
|
||||
double delta=0, int borderType=BORDER_DEFAULT );
|
||||
CV_EXPORTS_W void sepFilter2D( const InputArray& src, OutputArray dst, int ddepth,
|
||||
const InputArray& kernelX, const InputArray& kernelY,
|
||||
Point anchor=Point(-1,-1),
|
||||
double delta=0, int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! applies generalized Sobel operator to the image
|
||||
CV_EXPORTS_AS(sobel) void Sobel( const Mat& src, CV_OUT Mat& dst, int ddepth,
|
||||
int dx, int dy, int ksize=3,
|
||||
double scale=1, double delta=0,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
CV_EXPORTS_AS(sobel) void Sobel( const InputArray& src, OutputArray dst, int ddepth,
|
||||
int dx, int dy, int ksize=3,
|
||||
double scale=1, double delta=0,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! applies the vertical or horizontal Scharr operator to the image
|
||||
CV_EXPORTS_AS(scharr) void Scharr( const Mat& src, CV_OUT Mat& dst, int ddepth,
|
||||
int dx, int dy, double scale=1, double delta=0,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
CV_EXPORTS_AS(scharr) void Scharr( const InputArray& src, OutputArray dst, int ddepth,
|
||||
int dx, int dy, double scale=1, double delta=0,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! applies Laplacian operator to the image
|
||||
CV_EXPORTS_AS(laplacian) void Laplacian( const Mat& src, CV_OUT Mat& dst, int ddepth,
|
||||
int ksize=1, double scale=1, double delta=0,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
CV_EXPORTS_AS(laplacian) void Laplacian( const InputArray& src, OutputArray dst, int ddepth,
|
||||
int ksize=1, double scale=1, double delta=0,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! applies Canny edge detector and produces the edge map.
|
||||
CV_EXPORTS_AS(canny) void Canny( const Mat& image, CV_OUT Mat& edges,
|
||||
double threshold1, double threshold2,
|
||||
int apertureSize=3, bool L2gradient=false );
|
||||
CV_EXPORTS_AS(canny) void Canny( const InputArray& image, OutputArray edges,
|
||||
double threshold1, double threshold2,
|
||||
int apertureSize=3, bool L2gradient=false );
|
||||
|
||||
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
|
||||
CV_EXPORTS_W void cornerMinEigenVal( const Mat& src, CV_OUT Mat& dst,
|
||||
CV_EXPORTS_W void cornerMinEigenVal( const InputArray& src, OutputArray dst,
|
||||
int blockSize, int ksize=3,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! computes Harris cornerness criteria at each image pixel
|
||||
CV_EXPORTS_W void cornerHarris( const Mat& src, CV_OUT Mat& dst, int blockSize,
|
||||
int ksize, double k,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
CV_EXPORTS_W void cornerHarris( const InputArray& src, OutputArray dst, int blockSize,
|
||||
int ksize, double k,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! computes both eigenvalues and the eigenvectors of 2x2 derivative covariation matrix at each pixel. The output is stored as 6-channel matrix.
|
||||
CV_EXPORTS_W void cornerEigenValsAndVecs( const Mat& src, CV_OUT Mat& dst,
|
||||
int blockSize, int ksize,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
CV_EXPORTS_W void cornerEigenValsAndVecs( const InputArray& src, OutputArray dst,
|
||||
int blockSize, int ksize,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! computes another complex cornerness criteria at each pixel
|
||||
CV_EXPORTS_W void preCornerDetect( const Mat& src, CV_OUT Mat& dst, int ksize,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
CV_EXPORTS_W void preCornerDetect( const InputArray& src, OutputArray dst, int ksize,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! adjusts the corner locations with sub-pixel accuracy to maximize the certain cornerness criteria
|
||||
CV_EXPORTS void cornerSubPix( const Mat& image, vector<Point2f>& corners,
|
||||
CV_EXPORTS void cornerSubPix( const InputArray& image, InputOutputArray corners,
|
||||
Size winSize, Size zeroZone,
|
||||
TermCriteria criteria );
|
||||
|
||||
//! finds the strong enough corners where the cornerMinEigenVal() or cornerHarris() report the local maxima
|
||||
CV_EXPORTS_W void goodFeaturesToTrack( const Mat& image, CV_OUT vector<Point2f>& corners,
|
||||
CV_EXPORTS_W void goodFeaturesToTrack( const InputArray& image, OutputArray corners,
|
||||
int maxCorners, double qualityLevel, double minDistance,
|
||||
const Mat& mask=Mat(), int blockSize=3,
|
||||
const InputArray& mask=InputArray(), int blockSize=3,
|
||||
bool useHarrisDetector=false, double k=0.04 );
|
||||
|
||||
//! finds lines in the black-n-white image using the standard or pyramid Hough transform
|
||||
CV_EXPORTS_AS(houghLines) void HoughLines( const Mat& image, CV_OUT vector<Vec2f>& lines,
|
||||
double rho, double theta, int threshold,
|
||||
double srn=0, double stn=0 );
|
||||
CV_EXPORTS_AS(houghLines) void HoughLines( const InputArray& image, OutputArray lines,
|
||||
double rho, double theta, int threshold,
|
||||
double srn=0, double stn=0 );
|
||||
|
||||
//! finds line segments in the black-n-white image using probabalistic Hough transform
|
||||
CV_EXPORTS_AS(houghLinesP) void HoughLinesP( Mat& image, CV_OUT vector<Vec4i>& lines,
|
||||
double rho, double theta, int threshold,
|
||||
double minLineLength=0, double maxLineGap=0 );
|
||||
CV_EXPORTS_AS(houghLinesP) void HoughLinesP( const InputArray& image, OutputArray lines,
|
||||
double rho, double theta, int threshold,
|
||||
double minLineLength=0, double maxLineGap=0 );
|
||||
|
||||
//! finds circles in the grayscale image using 2+1 gradient Hough transform
|
||||
CV_EXPORTS_AS(houghCircles) void HoughCircles( const Mat& image, CV_OUT vector<Vec3f>& circles,
|
||||
int method, double dp, double minDist,
|
||||
double param1=100, double param2=100,
|
||||
int minRadius=0, int maxRadius=0 );
|
||||
CV_EXPORTS_AS(houghCircles) void HoughCircles( const InputArray& image, OutputArray circles,
|
||||
int method, double dp, double minDist,
|
||||
double param1=100, double param2=100,
|
||||
int minRadius=0, int maxRadius=0 );
|
||||
|
||||
//! erodes the image (applies the local minimum operator)
|
||||
CV_EXPORTS_W void erode( const Mat& src, CV_OUT Mat& dst, const Mat& kernel,
|
||||
Point anchor=Point(-1,-1), int iterations=1,
|
||||
int borderType=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=morphologyDefaultBorderValue() );
|
||||
CV_EXPORTS_W void erode( const InputArray& src, OutputArray dst, const InputArray& kernel,
|
||||
Point anchor=Point(-1,-1), int iterations=1,
|
||||
int borderType=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=morphologyDefaultBorderValue() );
|
||||
|
||||
//! dilates the image (applies the local maximum operator)
|
||||
CV_EXPORTS_W void dilate( const Mat& src, CV_OUT Mat& dst, const Mat& kernel,
|
||||
Point anchor=Point(-1,-1), int iterations=1,
|
||||
int borderType=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=morphologyDefaultBorderValue() );
|
||||
CV_EXPORTS_W void dilate( const InputArray& src, OutputArray dst, const InputArray& kernel,
|
||||
Point anchor=Point(-1,-1), int iterations=1,
|
||||
int borderType=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=morphologyDefaultBorderValue() );
|
||||
|
||||
//! applies an advanced morphological operation to the image
|
||||
CV_EXPORTS_W void morphologyEx( const Mat& src, CV_OUT Mat& dst,
|
||||
int op, const Mat& kernel,
|
||||
Point anchor=Point(-1,-1), int iterations=1,
|
||||
int borderType=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=morphologyDefaultBorderValue() );
|
||||
CV_EXPORTS_W void morphologyEx( const InputArray& src, OutputArray dst,
|
||||
int op, const InputArray& kernel,
|
||||
Point anchor=Point(-1,-1), int iterations=1,
|
||||
int borderType=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=morphologyDefaultBorderValue() );
|
||||
|
||||
//! interpolation algorithm
|
||||
enum
|
||||
@@ -512,37 +513,41 @@ enum
|
||||
};
|
||||
|
||||
//! resizes the image
|
||||
CV_EXPORTS_W void resize( const Mat& src, CV_OUT Mat& dst,
|
||||
Size dsize, double fx=0, double fy=0,
|
||||
int interpolation=INTER_LINEAR );
|
||||
CV_EXPORTS_W void resize( const InputArray& src, OutputArray dst,
|
||||
Size dsize, double fx=0, double fy=0,
|
||||
int interpolation=INTER_LINEAR );
|
||||
|
||||
//! warps the image using affine transformation
|
||||
CV_EXPORTS_W void warpAffine( const Mat& src, CV_OUT Mat& dst,
|
||||
const Mat& M, Size dsize,
|
||||
int flags=INTER_LINEAR,
|
||||
int borderMode=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=Scalar());
|
||||
CV_EXPORTS_W void warpAffine( const InputArray& src, OutputArray dst,
|
||||
const InputArray& M, Size dsize,
|
||||
int flags=INTER_LINEAR,
|
||||
int borderMode=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=Scalar());
|
||||
|
||||
//! warps the image using perspective transformation
|
||||
CV_EXPORTS_W void warpPerspective( const Mat& src, CV_OUT Mat& dst,
|
||||
const Mat& M, Size dsize,
|
||||
int flags=INTER_LINEAR,
|
||||
int borderMode=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=Scalar());
|
||||
CV_EXPORTS_W void warpPerspective( const InputArray& src, OutputArray dst,
|
||||
const InputArray& M, Size dsize,
|
||||
int flags=INTER_LINEAR,
|
||||
int borderMode=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=Scalar());
|
||||
|
||||
enum { INTER_BITS=5, INTER_BITS2=INTER_BITS*2,
|
||||
enum
|
||||
{
|
||||
INTER_BITS=5, INTER_BITS2=INTER_BITS*2,
|
||||
INTER_TAB_SIZE=(1<<INTER_BITS),
|
||||
INTER_TAB_SIZE2=INTER_TAB_SIZE*INTER_TAB_SIZE };
|
||||
INTER_TAB_SIZE2=INTER_TAB_SIZE*INTER_TAB_SIZE
|
||||
};
|
||||
|
||||
//! warps the image using the precomputed maps. The maps are stored in either floating-point or integer fixed-point format
|
||||
CV_EXPORTS_W void remap( const Mat& src, CV_OUT Mat& dst, const Mat& map1, const Mat& map2,
|
||||
int interpolation, int borderMode=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=Scalar());
|
||||
CV_EXPORTS_W void remap( const InputArray& src, OutputArray dst,
|
||||
const InputArray& map1, const InputArray& map2,
|
||||
int interpolation, int borderMode=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=Scalar());
|
||||
|
||||
//! converts maps for remap from floating-point to fixed-point format or backwards
|
||||
CV_EXPORTS_W void convertMaps( const Mat& map1, const Mat& map2,
|
||||
CV_OUT Mat& dstmap1, CV_OUT Mat& dstmap2,
|
||||
int dstmap1type, bool nninterpolation=false );
|
||||
CV_EXPORTS_W void convertMaps( const InputArray& map1, const InputArray& map2,
|
||||
OutputArray dstmap1, OutputArray dstmap2,
|
||||
int dstmap1type, bool nninterpolation=false );
|
||||
|
||||
//! returns 2x3 affine transformation matrix for the planar rotation.
|
||||
CV_EXPORTS_W Mat getRotationMatrix2D( Point2f center, double angle, double scale );
|
||||
@@ -551,29 +556,34 @@ CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[]
|
||||
//! returns 2x3 affine transformation for the corresponding 3 point pairs.
|
||||
CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
|
||||
//! computes 2x3 affine transformation matrix that is inverse to the specified 2x3 affine transformation.
|
||||
CV_EXPORTS_W void invertAffineTransform( const Mat& M, CV_OUT Mat& iM );
|
||||
CV_EXPORTS_W void invertAffineTransform( const InputArray& M, OutputArray iM );
|
||||
|
||||
//! extracts rectangle from the image at sub-pixel location
|
||||
CV_EXPORTS_W void getRectSubPix( const Mat& image, Size patchSize,
|
||||
Point2f center, CV_OUT Mat& patch, int patchType=-1 );
|
||||
CV_EXPORTS_W void getRectSubPix( const InputArray& image, Size patchSize,
|
||||
Point2f center, OutputArray patch, int patchType=-1 );
|
||||
|
||||
//! computes the integral image
|
||||
CV_EXPORTS_W void integral( const Mat& src, CV_OUT Mat& sum, int sdepth=-1 );
|
||||
CV_EXPORTS_W void integral( const InputArray& src, OutputArray sum, int sdepth=-1 );
|
||||
//! computes the integral image and integral for the squared image
|
||||
CV_EXPORTS_AS(integral2) void integral( const Mat& src, CV_OUT Mat& sum, CV_OUT Mat& sqsum, int sdepth=-1 );
|
||||
CV_EXPORTS_AS(integral2) void integral( const InputArray& src, OutputArray sum,
|
||||
OutputArray sqsum, int sdepth=-1 );
|
||||
//! computes the integral image, integral for the squared image and the tilted integral image
|
||||
CV_EXPORTS_AS(integral3) void integral( const Mat& src, CV_OUT Mat& sum, CV_OUT Mat& sqsum, CV_OUT Mat& tilted, int sdepth=-1 );
|
||||
CV_EXPORTS_AS(integral3) void integral( const InputArray& src, OutputArray sum,
|
||||
OutputArray sqsum, OutputArray tilted,
|
||||
int sdepth=-1 );
|
||||
|
||||
//! adds image to the accumulator (dst += src). Unlike cv::add, dst and src can have different types.
|
||||
CV_EXPORTS_W void accumulate( const Mat& src, CV_IN_OUT Mat& dst, const Mat& mask=Mat() );
|
||||
CV_EXPORTS_W void accumulate( const InputArray& src, CV_IN_OUT InputOutputArray dst,
|
||||
const InputArray& mask=InputArray() );
|
||||
//! adds squared src image to the accumulator (dst += src*src).
|
||||
CV_EXPORTS_W void accumulateSquare( const Mat& src, CV_IN_OUT Mat& dst, const Mat& mask=Mat() );
|
||||
CV_EXPORTS_W void accumulateSquare( const InputArray& src, CV_IN_OUT InputOutputArray dst,
|
||||
const InputArray& mask=InputArray() );
|
||||
//! adds product of the 2 images to the accumulator (dst += src1*src2).
|
||||
CV_EXPORTS_W void accumulateProduct( const Mat& src1, const Mat& src2,
|
||||
CV_IN_OUT Mat& dst, const Mat& mask=Mat() );
|
||||
CV_EXPORTS_W void accumulateProduct( const InputArray& src1, const InputArray& src2,
|
||||
CV_IN_OUT InputOutputArray dst, const InputArray& mask=InputArray() );
|
||||
//! updates the running average (dst = dst*(1-alpha) + src*alpha)
|
||||
CV_EXPORTS_W void accumulateWeighted( const Mat& src, CV_IN_OUT Mat& dst,
|
||||
double alpha, const Mat& mask=Mat() );
|
||||
CV_EXPORTS_W void accumulateWeighted( const InputArray& src, CV_IN_OUT InputOutputArray dst,
|
||||
double alpha, const InputArray& mask=InputArray() );
|
||||
|
||||
//! type of the threshold operation
|
||||
enum { THRESH_BINARY=CV_THRESH_BINARY, THRESH_BINARY_INV=CV_THRESH_BINARY_INV,
|
||||
@@ -582,30 +592,37 @@ enum { THRESH_BINARY=CV_THRESH_BINARY, THRESH_BINARY_INV=CV_THRESH_BINARY_INV,
|
||||
THRESH_OTSU=CV_THRESH_OTSU };
|
||||
|
||||
//! applies fixed threshold to the image
|
||||
CV_EXPORTS_W double threshold( const Mat& src, CV_OUT Mat& dst, double thresh, double maxval, int type );
|
||||
CV_EXPORTS_W double threshold( const InputArray& src, OutputArray dst,
|
||||
double thresh, double maxval, int type );
|
||||
|
||||
//! adaptive threshold algorithm
|
||||
enum { ADAPTIVE_THRESH_MEAN_C=0, ADAPTIVE_THRESH_GAUSSIAN_C=1 };
|
||||
|
||||
//! applies variable (adaptive) threshold to the image
|
||||
CV_EXPORTS_W void adaptiveThreshold( const Mat& src, CV_OUT Mat& dst, double maxValue,
|
||||
int adaptiveMethod, int thresholdType,
|
||||
int blockSize, double C );
|
||||
CV_EXPORTS_W void adaptiveThreshold( const InputArray& src, OutputArray dst,
|
||||
double maxValue, int adaptiveMethod,
|
||||
int thresholdType, int blockSize, double C );
|
||||
|
||||
//! smooths and downsamples the image
|
||||
CV_EXPORTS_W void pyrDown( const Mat& src, CV_OUT Mat& dst, const Size& dstsize=Size());
|
||||
CV_EXPORTS_W void pyrDown( const InputArray& src, OutputArray dst,
|
||||
const Size& dstsize=Size());
|
||||
//! upsamples and smoothes the image
|
||||
CV_EXPORTS_W void pyrUp( const Mat& src, CV_OUT Mat& dst, const Size& dstsize=Size());
|
||||
CV_EXPORTS_W void pyrUp( const InputArray& src, OutputArray dst,
|
||||
const Size& dstsize=Size());
|
||||
|
||||
//! builds the gaussian pyramid using pyrDown() as a basic operation
|
||||
CV_EXPORTS void buildPyramid( const Mat& src, CV_OUT vector<Mat>& dst, int maxlevel );
|
||||
CV_EXPORTS void buildPyramid( const InputArray& src, OutputArrayOfArrays dst, int maxlevel );
|
||||
|
||||
//! corrects lens distortion for the given camera matrix and distortion coefficients
|
||||
CV_EXPORTS_W void undistort( const Mat& src, CV_OUT Mat& dst, const Mat& cameraMatrix,
|
||||
const Mat& distCoeffs, const Mat& newCameraMatrix=Mat() );
|
||||
CV_EXPORTS_W void undistort( const InputArray& src, OutputArray dst,
|
||||
const InputArray& cameraMatrix,
|
||||
const InputArray& distCoeffs,
|
||||
const InputArray& newCameraMatrix=InputArray() );
|
||||
|
||||
//! initializes maps for cv::remap() to correct lens distortion and optionally rectify the image
|
||||
CV_EXPORTS_W void initUndistortRectifyMap( const Mat& cameraMatrix, const Mat& distCoeffs,
|
||||
const Mat& R, const Mat& newCameraMatrix,
|
||||
Size size, int m1type, CV_OUT Mat& map1, CV_OUT Mat& map2 );
|
||||
CV_EXPORTS_W void initUndistortRectifyMap( const InputArray& cameraMatrix, const InputArray& distCoeffs,
|
||||
const InputArray& R, const InputArray& newCameraMatrix,
|
||||
Size size, int m1type, OutputArray map1, OutputArray map2 );
|
||||
|
||||
enum
|
||||
{
|
||||
@@ -614,42 +631,39 @@ enum
|
||||
};
|
||||
|
||||
//! initializes maps for cv::remap() for wide-angle
|
||||
CV_EXPORTS_W float initWideAngleProjMap( const Mat& cameraMatrix, const Mat& distCoeffs,
|
||||
Size imageSize, int destImageWidth,
|
||||
int m1type, CV_OUT Mat& map1, CV_OUT Mat& map2,
|
||||
int projType=PROJ_SPHERICAL_EQRECT, double alpha=0);
|
||||
CV_EXPORTS_W float initWideAngleProjMap( const InputArray& cameraMatrix, const InputArray& distCoeffs,
|
||||
Size imageSize, int destImageWidth,
|
||||
int m1type, OutputArray map1, OutputArray map2,
|
||||
int projType=PROJ_SPHERICAL_EQRECT, double alpha=0);
|
||||
|
||||
//! returns the default new camera matrix (by default it is the same as cameraMatrix unless centerPricipalPoint=true)
|
||||
CV_EXPORTS_W Mat getDefaultNewCameraMatrix( const Mat& cameraMatrix, Size imgsize=Size(),
|
||||
bool centerPrincipalPoint=false );
|
||||
CV_EXPORTS_W Mat getDefaultNewCameraMatrix( const InputArray& cameraMatrix, Size imgsize=Size(),
|
||||
bool centerPrincipalPoint=false );
|
||||
|
||||
//! returns points' coordinates after lens distortion correction
|
||||
CV_EXPORTS void undistortPoints( const Mat& src, CV_OUT vector<Point2f>& dst,
|
||||
const Mat& cameraMatrix, const Mat& distCoeffs,
|
||||
const Mat& R=Mat(), const Mat& P=Mat());
|
||||
//! returns points' coordinates after lens distortion correction
|
||||
CV_EXPORTS_W void undistortPoints( const Mat& src, CV_OUT Mat& dst,
|
||||
const Mat& cameraMatrix, const Mat& distCoeffs,
|
||||
const Mat& R=Mat(), const Mat& P=Mat());
|
||||
CV_EXPORTS void undistortPoints( const InputArray& src, OutputArray dst,
|
||||
const InputArray& cameraMatrix, const InputArray& distCoeffs,
|
||||
const InputArray& R=InputArray(), const InputArray& P=InputArray());
|
||||
|
||||
template<> CV_EXPORTS void Ptr<CvHistogram>::delete_obj();
|
||||
|
||||
//! computes the joint dense histogram for a set of images.
|
||||
CV_EXPORTS void calcHist( const Mat* images, int nimages,
|
||||
const int* channels, const Mat& mask,
|
||||
Mat& hist, int dims, const int* histSize,
|
||||
const int* channels, const InputArray& mask,
|
||||
OutputArray hist, int dims, const int* histSize,
|
||||
const float** ranges, bool uniform=true, bool accumulate=false );
|
||||
|
||||
//! computes the joint sparse histogram for a set of images.
|
||||
CV_EXPORTS void calcHist( const Mat* images, int nimages,
|
||||
const int* channels, const Mat& mask,
|
||||
const int* channels, const InputArray& mask,
|
||||
SparseMat& hist, int dims,
|
||||
const int* histSize, const float** ranges,
|
||||
bool uniform=true, bool accumulate=false );
|
||||
|
||||
//! computes back projection for the set of images
|
||||
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
|
||||
const int* channels, const Mat& hist,
|
||||
Mat& backProject, const float** ranges,
|
||||
const int* channels, const InputArray& hist,
|
||||
OutputArray backProject, const float** ranges,
|
||||
double scale=1, bool uniform=true );
|
||||
|
||||
//! computes back projection for the set of images
|
||||
@@ -659,25 +673,26 @@ CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
|
||||
double scale=1, bool uniform=true );
|
||||
|
||||
//! compares two histograms stored in dense arrays
|
||||
CV_EXPORTS_W double compareHist( const Mat& H1, const Mat& H2, int method );
|
||||
CV_EXPORTS_W double compareHist( const InputArray& H1, const InputArray& H2, int method );
|
||||
|
||||
//! compares two histograms stored in sparse arrays
|
||||
CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );
|
||||
|
||||
//! normalizes the grayscale image brightness and contrast by normalizing its histogram
|
||||
CV_EXPORTS_W void equalizeHist( const Mat& src, CV_OUT Mat& dst );
|
||||
CV_EXPORTS_W void equalizeHist( const InputArray& src, OutputArray dst );
|
||||
|
||||
CV_EXPORTS float EMD( const Mat& signature1, const Mat& signature2,
|
||||
int distType, const Mat& cost=Mat(),
|
||||
float* lowerBound=0, Mat* flow=0 );
|
||||
CV_EXPORTS float EMD( const InputArray& signature1, const InputArray& signature2,
|
||||
int distType, const InputArray& cost=InputArray(),
|
||||
float* lowerBound=0, OutputArray flow=OutputArray() );
|
||||
|
||||
//! segments the image using watershed algorithm
|
||||
CV_EXPORTS_W void watershed( const Mat& image, Mat& markers );
|
||||
CV_EXPORTS_W void watershed( const InputArray& image, InputOutputArray markers );
|
||||
|
||||
//! filters image using meanshift algorithm
|
||||
CV_EXPORTS_W void pyrMeanShiftFiltering( const Mat& src, CV_OUT Mat& dst,
|
||||
double sp, double sr, int maxLevel=1,
|
||||
TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );
|
||||
CV_EXPORTS_W void pyrMeanShiftFiltering( const InputArray& src, OutputArray dst,
|
||||
double sp, double sr, int maxLevel=1,
|
||||
TermCriteria termcrit=TermCriteria(
|
||||
TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );
|
||||
|
||||
//! class of the pixel in GrabCut algorithm
|
||||
enum
|
||||
@@ -697,9 +712,9 @@ enum
|
||||
};
|
||||
|
||||
//! segments the image using GrabCut algorithm
|
||||
CV_EXPORTS_W void grabCut( const Mat& img, Mat& mask, Rect rect,
|
||||
Mat& bgdModel, Mat& fgdModel,
|
||||
int iterCount, int mode = GC_EVAL );
|
||||
CV_EXPORTS_W void grabCut( const InputArray& img, InputOutputArray mask, Rect rect,
|
||||
InputOutputArray bgdModel, InputOutputArray fgdModel,
|
||||
int iterCount, int mode = GC_EVAL );
|
||||
|
||||
//! the inpainting algorithm
|
||||
enum
|
||||
@@ -709,35 +724,33 @@ enum
|
||||
};
|
||||
|
||||
//! restores the damaged image areas using one of the available intpainting algorithms
|
||||
CV_EXPORTS_W void inpaint( const Mat& src, const Mat& inpaintMask,
|
||||
CV_OUT Mat& dst, double inpaintRange, int flags );
|
||||
CV_EXPORTS_W void inpaint( const InputArray& src, const InputArray& inpaintMask,
|
||||
OutputArray dst, double inpaintRange, int flags );
|
||||
|
||||
//! builds the discrete Voronoi diagram
|
||||
CV_EXPORTS_AS(distanceTransformWithLabels)
|
||||
void distanceTransform( const Mat& src, CV_OUT Mat& dst, Mat& labels,
|
||||
int distanceType, int maskSize );
|
||||
CV_EXPORTS_W void distanceTransform( const InputArray& src, OutputArray dst,
|
||||
OutputArray labels, int distanceType, int maskSize );
|
||||
|
||||
//! computes the distance transform map
|
||||
CV_EXPORTS_W void distanceTransform( const Mat& src, CV_OUT Mat& dst,
|
||||
CV_EXPORTS void distanceTransform( const InputArray& src, OutputArray dst,
|
||||
int distanceType, int maskSize );
|
||||
|
||||
enum { FLOODFILL_FIXED_RANGE = 1 << 16,
|
||||
FLOODFILL_MASK_ONLY = 1 << 17 };
|
||||
enum { FLOODFILL_FIXED_RANGE = 1 << 16, FLOODFILL_MASK_ONLY = 1 << 17 };
|
||||
|
||||
//! fills the semi-uniform image region starting from the specified seed point
|
||||
CV_EXPORTS_W int floodFill( Mat& image,
|
||||
CV_EXPORTS int floodFill( InputOutputArray image,
|
||||
Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
|
||||
Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
|
||||
int flags=4 );
|
||||
|
||||
//! fills the semi-uniform image region and/or the mask starting from the specified seed point
|
||||
CV_EXPORTS_AS(floodFillMask) int floodFill( Mat& image, Mat& mask,
|
||||
Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
|
||||
Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
|
||||
int flags=4 );
|
||||
CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask,
|
||||
Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
|
||||
Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
|
||||
int flags=4 );
|
||||
|
||||
//! converts image from one color space to another
|
||||
CV_EXPORTS_W void cvtColor( const Mat& src, CV_OUT Mat& dst, int code, int dstCn=0 );
|
||||
CV_EXPORTS_W void cvtColor( const InputArray& src, OutputArray dst, int code, int dstCn=0 );
|
||||
|
||||
//! raster image moments
|
||||
class CV_EXPORTS_W_MAP Moments
|
||||
@@ -762,7 +775,7 @@ public:
|
||||
};
|
||||
|
||||
//! computes moments of the rasterized shape or a vector of points
|
||||
CV_EXPORTS_W Moments moments( const Mat& array, bool binaryImage=false );
|
||||
CV_EXPORTS_W Moments moments( const InputArray& array, bool binaryImage=false );
|
||||
|
||||
//! computes 7 Hu invariants from the moments
|
||||
CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
|
||||
@@ -771,7 +784,8 @@ CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
|
||||
enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF=4, TM_CCOEFF_NORMED=5 };
|
||||
|
||||
//! computes the proximity map for the raster template and the image where the template is searched for
|
||||
CV_EXPORTS_W void matchTemplate( const Mat& image, const Mat& templ, CV_OUT Mat& result, int method );
|
||||
CV_EXPORTS_W void matchTemplate( const InputArray& image, const InputArray& templ,
|
||||
OutputArray result, int method );
|
||||
|
||||
//! mode of the contour retrieval algorithm
|
||||
enum
|
||||
@@ -786,80 +800,64 @@ enum
|
||||
enum
|
||||
{
|
||||
CHAIN_APPROX_NONE=CV_CHAIN_APPROX_NONE,
|
||||
CHAIN_APPROX_SIMPLE=CV_CHAIN_APPROX_SIMPLE,
|
||||
CHAIN_APPROX_TC89_L1=CV_CHAIN_APPROX_TC89_L1,
|
||||
CHAIN_APPROX_TC89_KCOS=CV_CHAIN_APPROX_TC89_KCOS
|
||||
CHAIN_APPROX_SIMPLE=CV_CHAIN_APPROX_SIMPLE,
|
||||
CHAIN_APPROX_TC89_L1=CV_CHAIN_APPROX_TC89_L1,
|
||||
CHAIN_APPROX_TC89_KCOS=CV_CHAIN_APPROX_TC89_KCOS
|
||||
};
|
||||
|
||||
//! retrieves contours and the hierarchical information from black-n-white image.
|
||||
CV_EXPORTS void findContours( Mat& image, CV_OUT vector<vector<Point> >& contours,
|
||||
vector<Vec4i>& hierarchy, int mode,
|
||||
CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contours,
|
||||
OutputArray hierarchy, int mode,
|
||||
int method, Point offset=Point());
|
||||
|
||||
//! retrieves contours from black-n-white image.
|
||||
CV_EXPORTS void findContours( Mat& image, CV_OUT vector<vector<Point> >& contours,
|
||||
CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contours,
|
||||
int mode, int method, Point offset=Point());
|
||||
|
||||
//! draws contours in the image
|
||||
CV_EXPORTS void drawContours( Mat& image, const vector<vector<Point> >& contours,
|
||||
CV_EXPORTS void drawContours( InputOutputArray image, const InputArrayOfArrays& contours,
|
||||
int contourIdx, const Scalar& color,
|
||||
int thickness=1, int lineType=8,
|
||||
const vector<Vec4i>& hierarchy=vector<Vec4i>(),
|
||||
const InputArray& hierarchy=InputArray(),
|
||||
int maxLevel=INT_MAX, Point offset=Point() );
|
||||
|
||||
//! approximates contour or a curve using Douglas-Peucker algorithm
|
||||
CV_EXPORTS void approxPolyDP( const Mat& curve,
|
||||
CV_OUT vector<Point>& approxCurve,
|
||||
double epsilon, bool closed );
|
||||
//! approximates contour or a curve using Douglas-Peucker algorithm
|
||||
CV_EXPORTS void approxPolyDP( const Mat& curve,
|
||||
CV_OUT vector<Point2f>& approxCurve,
|
||||
CV_EXPORTS void approxPolyDP( const InputArray& curve,
|
||||
OutputArray approxCurve,
|
||||
double epsilon, bool closed );
|
||||
|
||||
//! computes the contour perimeter (closed=true) or a curve length
|
||||
CV_EXPORTS_W double arcLength( const Mat& curve, bool closed );
|
||||
CV_EXPORTS_W double arcLength( const InputArray& curve, bool closed );
|
||||
//! computes the bounding rectangle for a contour
|
||||
CV_EXPORTS_W Rect boundingRect( const Mat& points );
|
||||
CV_EXPORTS_W Rect boundingRect( const InputArray& points );
|
||||
//! computes the contour area
|
||||
CV_EXPORTS_W double contourArea( const Mat& contour, bool oriented=false );
|
||||
CV_EXPORTS_W double contourArea( const InputArray& contour, bool oriented=false );
|
||||
//! computes the minimal rotated rectangle for a set of points
|
||||
CV_EXPORTS_W RotatedRect minAreaRect( const Mat& points );
|
||||
CV_EXPORTS_W RotatedRect minAreaRect( const InputArray& points );
|
||||
//! computes the minimal enclosing circle for a set of points
|
||||
CV_EXPORTS_W void minEnclosingCircle( const Mat& points,
|
||||
Point2f& center, float& radius );
|
||||
CV_EXPORTS_W void minEnclosingCircle( const InputArray& points,
|
||||
Point2f& center, float& radius );
|
||||
//! matches two contours using one of the available algorithms
|
||||
CV_EXPORTS_W double matchShapes( const Mat& contour1,
|
||||
const Mat& contour2,
|
||||
int method, double parameter );
|
||||
CV_EXPORTS_W double matchShapes( const InputArray& contour1, const InputArray& contour2,
|
||||
int method, double parameter );
|
||||
//! computes convex hull for a set of 2D points.
|
||||
CV_EXPORTS void convexHull( const Mat& points, CV_OUT vector<int>& hull, bool clockwise=false );
|
||||
//! computes convex hull for a set of 2D points.
|
||||
CV_EXPORTS void convexHull( const Mat& points, CV_OUT vector<Point>& hull, bool clockwise=false );
|
||||
//! computes convex hull for a set of 2D points.
|
||||
CV_EXPORTS void convexHull( const Mat& points, CV_OUT vector<Point2f>& hull, bool clockwise=false );
|
||||
CV_EXPORTS void convexHull( const InputArray& points, OutputArray hull,
|
||||
bool clockwise=false, bool returnPoints=true );
|
||||
|
||||
//! returns true iff the contour is convex. Does not support contours with self-intersection
|
||||
CV_EXPORTS_W bool isContourConvex( const Mat& contour );
|
||||
CV_EXPORTS_W bool isContourConvex( const InputArray& contour );
|
||||
|
||||
//! fits ellipse to the set of 2D points
|
||||
CV_EXPORTS_W RotatedRect fitEllipse( const Mat& points );
|
||||
CV_EXPORTS_W RotatedRect fitEllipse( const InputArray& points );
|
||||
|
||||
//! fits line to the set of 2D points using M-estimator algorithm
|
||||
CV_EXPORTS void fitLine( const Mat& points, CV_OUT Vec4f& line, int distType,
|
||||
double param, double reps, double aeps );
|
||||
//! fits line to the set of 3D points using M-estimator algorithm
|
||||
CV_EXPORTS void fitLine( const Mat& points, CV_OUT Vec6f& line, int distType,
|
||||
double param, double reps, double aeps );
|
||||
CV_EXPORTS void fitLine( const InputArray& points, OutputArray line, int distType,
|
||||
double param, double reps, double aeps );
|
||||
//! checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary
|
||||
CV_EXPORTS_W double pointPolygonTest( const Mat& contour,
|
||||
Point2f pt, bool measureDist );
|
||||
|
||||
//! estimates the best-fit affine transformation that maps one 2D point set to another or one image to another.
|
||||
CV_EXPORTS_W Mat estimateRigidTransform( const Mat& A, const Mat& B,
|
||||
bool fullAffine );
|
||||
|
||||
CV_EXPORTS_W double pointPolygonTest( const InputArray& contour, Point2f pt, bool measureDist );
|
||||
|
||||
}
|
||||
|
||||
|
||||
// 2009-01-12, Xavier Delacour <xavier.delacour@gmail.com>
|
||||
|
||||
struct lsh_hash {
|
||||
|
Reference in New Issue
Block a user