Merged the trunk r8907, r8908
This commit is contained in:
parent
af912f4843
commit
aa911275c3
@ -158,40 +158,19 @@ then paste the CDT 8.0 repository URL http://download.eclipse.org/tools/cdt/rele
|
|||||||
.. image:: images/eclipse_inst_cdt_2.png
|
.. image:: images/eclipse_inst_cdt_2.png
|
||||||
:alt: Configure builders
|
:alt: Configure builders
|
||||||
:align: center
|
:align: center
|
||||||
.. important:: This instructions should be applied for each Android project in *Eclipse* workspace having native (JNI) part to build.
|
|
||||||
|
|
||||||
#. Right click on your project in :guilabel:`Package Explorer` window and select :guilabel:`New` -> :guilabel:`Other`:
|
|
||||||
|
|
||||||
.. image:: images/eclipse_cdt_cfg1.png
|
.. important:: OpenCV 2.4.2 for Android package contains samples projects pre-configured to use CDT Builder for JNI part build via ``ndk-build``.
|
||||||
:alt: Configure CDT
|
|
||||||
:align: center
|
|
||||||
|
|
||||||
#. Select :guilabel:`C/C++` -> :guilabel:`Convert to C/C++ project`:
|
#. Define the ``NDKROOT`` environment variable containing the path to Android NDK in your system (e.g. **"X:\\Apps\\android-ndk-r8"** or **"/opt/android-ndk-r8"**)
|
||||||
|
|
||||||
.. image:: images/eclipse_cdt_cfg2.png
|
#. CDT Builder is configured for Windows hosts, on Linux or MacOS open `Project Properties` of the projects having JNI part (`face-detection`, `Tutorial 3` and `Tutorial 4`), select :guilabel:`C/C++ Build` in the left pane, remove **".cmd"** and leave ``"${NDKROOT}/ndk-build"`` in the :guilabel:`Build command` edit box and click :guilabel:`OK`.
|
||||||
:alt: Configure CDT
|
|
||||||
:align: center
|
|
||||||
|
|
||||||
#. Select :guilabel:`"C++"`, :guilabel:`"Makefile Project"`, :guilabel:`"Other Toolchain"`:
|
|
||||||
|
|
||||||
.. image:: images/eclipse_cdt_cfg3.png
|
|
||||||
:alt: Configure CDT
|
|
||||||
:align: center
|
|
||||||
|
|
||||||
#. Right click on your project in :guilabel:`Package Explorer` window and select :guilabel:`Properties`, then :guilabel:`C/C++ Build` in the left pane.
|
|
||||||
Unckeck :guilabel:`Use default build command` and put ``ndk-build`` invocation in the :guilabel:`Build command` edit box and click :guilabel:`Apply` :
|
|
||||||
|
|
||||||
.. image:: images/eclipse_cdt_cfg4.png
|
.. image:: images/eclipse_cdt_cfg4.png
|
||||||
:alt: Configure CDT
|
:alt: Configure CDT
|
||||||
:align: center
|
:align: center
|
||||||
|
|
||||||
#. Select :guilabel:`Builders` in the left pane, select :guilabel:`"CDT Builder"`, press :guilabel:`Edit` button on the righ and set check-boxes as on the picture below for automatic rebuild of JNI part:
|
|
||||||
|
|
||||||
.. image:: images/eclipse_cdt_cfg5.png
|
|
||||||
:alt: Configure CDT
|
|
||||||
:align: center
|
|
||||||
|
|
||||||
|
|
||||||
#. Use menu :guilabel:`Project` -> :guilabel:`Clean...` to make sure that NDK build is invoked on the project build:
|
#. Use menu :guilabel:`Project` -> :guilabel:`Clean...` to make sure that NDK build is invoked on the project build:
|
||||||
|
|
||||||
.. image:: images/eclipse_ndk_build.png
|
.. image:: images/eclipse_ndk_build.png
|
||||||
@ -243,7 +222,7 @@ OpenCV binary package includes 3 samples having JNI resources:
|
|||||||
|
|
||||||
This sample illustrates usage of both simple OpenCV face detector via Java API and advanced detection based face tracker via JNI and C++.
|
This sample illustrates usage of both simple OpenCV face detector via Java API and advanced detection based face tracker via JNI and C++.
|
||||||
|
|
||||||
Before OpenCV 2.4.2 for Android these projects are not configured to use CDT for building their native part , so you can do it yourself.
|
.. important:: Before OpenCV **2.4.2** for Android these projects were not configured to use CDT for building their native part , so you can do it yourself.
|
||||||
|
|
||||||
Practice: Create an Android application, which uses OpenCV
|
Practice: Create an Android application, which uses OpenCV
|
||||||
==========================================================
|
==========================================================
|
||||||
|
Binary file not shown.
Before Width: | Height: | Size: 42 KiB After Width: | Height: | Size: 42 KiB |
@ -3,8 +3,19 @@ SVN and KNearest digit recognition.
|
|||||||
|
|
||||||
Sample loads a dataset of handwritten digits from 'digits.png'.
|
Sample loads a dataset of handwritten digits from 'digits.png'.
|
||||||
Then it trains a SVN and KNearest classifiers on it and evaluates
|
Then it trains a SVN and KNearest classifiers on it and evaluates
|
||||||
their accuracy. Moment-based image deskew is used to improve
|
their accuracy.
|
||||||
the recognition accuracy.
|
|
||||||
|
Following preprocessing is applied to the dataset:
|
||||||
|
- Moment-based image deskew (see deskew())
|
||||||
|
- Digit images are split into 4 10x10 cells and 16-bin
|
||||||
|
histogram of oriented gradients is computed for each
|
||||||
|
cell
|
||||||
|
- Transform histograms to space with Hellinger metric (see [1] (RootSIFT))
|
||||||
|
|
||||||
|
|
||||||
|
[1] R. Arandjelovic, A. Zisserman
|
||||||
|
"Three things everyone should know to improve object retrieval"
|
||||||
|
http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf
|
||||||
|
|
||||||
Usage:
|
Usage:
|
||||||
digits.py
|
digits.py
|
||||||
@ -14,17 +25,25 @@ import numpy as np
|
|||||||
import cv2
|
import cv2
|
||||||
from multiprocessing.pool import ThreadPool
|
from multiprocessing.pool import ThreadPool
|
||||||
from common import clock, mosaic
|
from common import clock, mosaic
|
||||||
|
from numpy.linalg import norm
|
||||||
|
|
||||||
SZ = 20 # size of each digit is SZ x SZ
|
SZ = 20 # size of each digit is SZ x SZ
|
||||||
CLASS_N = 10
|
CLASS_N = 10
|
||||||
DIGITS_FN = 'digits.png'
|
DIGITS_FN = 'digits.png'
|
||||||
|
|
||||||
|
def split2d(img, cell_size, flatten=True):
|
||||||
|
h, w = img.shape[:2]
|
||||||
|
sx, sy = cell_size
|
||||||
|
cells = [np.hsplit(row, w//sx) for row in np.vsplit(img, h//sy)]
|
||||||
|
cells = np.array(cells)
|
||||||
|
if flatten:
|
||||||
|
cells = cells.reshape(-1, sy, sx)
|
||||||
|
return cells
|
||||||
|
|
||||||
def load_digits(fn):
|
def load_digits(fn):
|
||||||
print 'loading "%s" ...' % fn
|
print 'loading "%s" ...' % fn
|
||||||
digits_img = cv2.imread(fn, 0)
|
digits_img = cv2.imread(fn, 0)
|
||||||
h, w = digits_img.shape
|
digits = split2d(digits_img, (SZ, SZ))
|
||||||
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)]
|
|
||||||
digits = np.array(digits).reshape(-1, SZ, SZ)
|
|
||||||
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
|
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
|
||||||
return digits, labels
|
return digits, labels
|
||||||
|
|
||||||
@ -92,6 +111,31 @@ def evaluate_model(model, digits, samples, labels):
|
|||||||
vis.append(img)
|
vis.append(img)
|
||||||
return mosaic(25, vis)
|
return mosaic(25, vis)
|
||||||
|
|
||||||
|
def preprocess_simple(digits):
|
||||||
|
return np.float32(digits).reshape(-1, SZ*SZ) / 255.0
|
||||||
|
|
||||||
|
def preprocess_hog(digits):
|
||||||
|
samples = []
|
||||||
|
for img in digits:
|
||||||
|
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
|
||||||
|
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
|
||||||
|
mag, ang = cv2.cartToPolar(gx, gy)
|
||||||
|
bin_n = 16
|
||||||
|
bin = np.int32(bin_n*ang/(2*np.pi))
|
||||||
|
bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
|
||||||
|
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
|
||||||
|
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
|
||||||
|
hist = np.hstack(hists)
|
||||||
|
|
||||||
|
# transform to Hellinger kernel
|
||||||
|
eps = 1e-7
|
||||||
|
hist /= hist.sum() + eps
|
||||||
|
hist = np.sqrt(hist)
|
||||||
|
hist /= norm(hist) + eps
|
||||||
|
|
||||||
|
samples.append(hist)
|
||||||
|
return np.float32(samples)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
print __doc__
|
print __doc__
|
||||||
@ -100,12 +144,12 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
print 'preprocessing...'
|
print 'preprocessing...'
|
||||||
# shuffle digits
|
# shuffle digits
|
||||||
rand = np.random.RandomState(12345)
|
rand = np.random.RandomState(321)
|
||||||
shuffle = rand.permutation(len(digits))
|
shuffle = rand.permutation(len(digits))
|
||||||
digits, labels = digits[shuffle], labels[shuffle]
|
digits, labels = digits[shuffle], labels[shuffle]
|
||||||
|
|
||||||
digits2 = map(deskew, digits)
|
digits2 = map(deskew, digits)
|
||||||
samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0
|
samples = preprocess_hog(digits2)
|
||||||
|
|
||||||
train_n = int(0.9*len(samples))
|
train_n = int(0.9*len(samples))
|
||||||
cv2.imshow('test set', mosaic(25, digits[train_n:]))
|
cv2.imshow('test set', mosaic(25, digits[train_n:]))
|
||||||
@ -115,13 +159,13 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
|
|
||||||
print 'training KNearest...'
|
print 'training KNearest...'
|
||||||
model = KNearest(k=1)
|
model = KNearest(k=4)
|
||||||
model.train(samples_train, labels_train)
|
model.train(samples_train, labels_train)
|
||||||
vis = evaluate_model(model, digits_test, samples_test, labels_test)
|
vis = evaluate_model(model, digits_test, samples_test, labels_test)
|
||||||
cv2.imshow('KNearest test', vis)
|
cv2.imshow('KNearest test', vis)
|
||||||
|
|
||||||
print 'training SVM...'
|
print 'training SVM...'
|
||||||
model = SVM(C=4.66, gamma=0.08)
|
model = SVM(C=2.67, gamma=5.383)
|
||||||
model.train(samples_train, labels_train)
|
model.train(samples_train, labels_train)
|
||||||
vis = evaluate_model(model, digits_test, samples_test, labels_test)
|
vis = evaluate_model(model, digits_test, samples_test, labels_test)
|
||||||
cv2.imshow('SVM test', vis)
|
cv2.imshow('SVM test', vis)
|
||||||
|
@ -76,7 +76,7 @@ class App(object):
|
|||||||
shuffle = np.random.permutation(len(digits))
|
shuffle = np.random.permutation(len(digits))
|
||||||
digits, labels = digits[shuffle], labels[shuffle]
|
digits, labels = digits[shuffle], labels[shuffle]
|
||||||
digits2 = map(deskew, digits)
|
digits2 = map(deskew, digits)
|
||||||
samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0
|
samples = preprocess_hog(digits2)
|
||||||
return samples, labels
|
return samples, labels
|
||||||
|
|
||||||
def get_dataset(self):
|
def get_dataset(self):
|
||||||
@ -95,8 +95,8 @@ class App(object):
|
|||||||
return ires
|
return ires
|
||||||
|
|
||||||
def adjust_SVM(self):
|
def adjust_SVM(self):
|
||||||
Cs = np.logspace(0, 5, 10, base=2)
|
Cs = np.logspace(0, 10, 15, base=2)
|
||||||
gammas = np.logspace(-7, -2, 10, base=2)
|
gammas = np.logspace(-7, 4, 15, base=2)
|
||||||
scores = np.zeros((len(Cs), len(gammas)))
|
scores = np.zeros((len(Cs), len(gammas)))
|
||||||
scores[:] = np.nan
|
scores[:] = np.nan
|
||||||
|
|
||||||
@ -114,6 +114,9 @@ class App(object):
|
|||||||
print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100)
|
print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100)
|
||||||
print scores
|
print scores
|
||||||
|
|
||||||
|
print 'writing score table to "svm_scores.npz"'
|
||||||
|
np.savez('svm_scores.npz', scores=scores, Cs=Cs, gammas=gammas)
|
||||||
|
|
||||||
i, j = np.unravel_index(scores.argmin(), scores.shape)
|
i, j = np.unravel_index(scores.argmin(), scores.shape)
|
||||||
best_params = dict(C = Cs[i], gamma=gammas[j])
|
best_params = dict(C = Cs[i], gamma=gammas[j])
|
||||||
print 'best params:', best_params
|
print 'best params:', best_params
|
||||||
@ -142,7 +145,6 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
print __doc__
|
print __doc__
|
||||||
|
|
||||||
|
|
||||||
args, _ = getopt.getopt(sys.argv[1:], '', ['model=', 'cloud', 'env='])
|
args, _ = getopt.getopt(sys.argv[1:], '', ['model=', 'cloud', 'env='])
|
||||||
args = dict(args)
|
args = dict(args)
|
||||||
args.setdefault('--model', 'svm')
|
args.setdefault('--model', 'svm')
|
||||||
|
@ -1,10 +1,10 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
import digits
|
|
||||||
import os
|
import os
|
||||||
import video
|
import video
|
||||||
from common import mosaic
|
from common import mosaic
|
||||||
|
|
||||||
|
from digits import *
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
@ -15,11 +15,9 @@ def main():
|
|||||||
print '"%s" not found, run digits.py first' % classifier_fn
|
print '"%s" not found, run digits.py first' % classifier_fn
|
||||||
return
|
return
|
||||||
|
|
||||||
model = digits.SVM()
|
model = SVM()
|
||||||
model.load('digits_svm.dat')
|
model.load('digits_svm.dat')
|
||||||
|
|
||||||
SZ = 20
|
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
ret, frame = cap.read()
|
ret, frame = cap.read()
|
||||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||||
@ -55,13 +53,12 @@ def main():
|
|||||||
A[:,:2] = np.eye(2)*s
|
A[:,:2] = np.eye(2)*s
|
||||||
A[:,2] = t
|
A[:,2] = t
|
||||||
sub1 = cv2.warpAffine(sub, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
|
sub1 = cv2.warpAffine(sub, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
|
||||||
sub1 = digits.deskew(sub1)
|
sub1 = deskew(sub1)
|
||||||
if x+w+SZ < frame.shape[1] and y+SZ < frame.shape[0]:
|
if x+w+SZ < frame.shape[1] and y+SZ < frame.shape[0]:
|
||||||
frame[y:,x+w:][:SZ, :SZ] = sub1[...,np.newaxis]
|
frame[y:,x+w:][:SZ, :SZ] = sub1[...,np.newaxis]
|
||||||
|
|
||||||
sample = np.float32(sub1).reshape(1,SZ*SZ) / 255.0
|
sample = preprocess_hog([sub1])
|
||||||
digit = model.predict(sample)[0]
|
digit = model.predict(sample)[0]
|
||||||
|
|
||||||
cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
|
cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
|
||||||
|
|
||||||
|
|
||||||
|
@ -2,14 +2,16 @@
|
|||||||
Robust line fitting.
|
Robust line fitting.
|
||||||
==================
|
==================
|
||||||
|
|
||||||
Example of using cv2.fitLine function for fitting line to points in presence of outliers.
|
Example of using cv2.fitLine function for fitting line
|
||||||
|
to points in presence of outliers.
|
||||||
|
|
||||||
Usage
|
Usage
|
||||||
-----
|
-----
|
||||||
fitline.py
|
fitline.py
|
||||||
|
|
||||||
Switch through different M-estimator functions and see, how well the robust functions
|
Switch through different M-estimator functions and see,
|
||||||
fit the line even in case of ~50% of outliers.
|
how well the robust functions fit the line even
|
||||||
|
in case of ~50% of outliers.
|
||||||
|
|
||||||
Keys
|
Keys
|
||||||
----
|
----
|
||||||
|
Loading…
x
Reference in New Issue
Block a user