cv::norm -> cvtest::norm in tests
Conflicts: modules/core/src/stat.cpp
This commit is contained in:
@@ -2364,7 +2364,7 @@ double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _m
|
||||
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
|
||||
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat();
|
||||
|
||||
normType &= 7;
|
||||
normType &= NORM_TYPE_MASK;
|
||||
CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR ||
|
||||
((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src1.type() == CV_8U) );
|
||||
size_t total_size = src1.total();
|
||||
|
@@ -1362,7 +1362,8 @@ TEST_P(ElemWiseTest, accuracy)
|
||||
|
||||
double maxErr = op->getMaxErr(depth);
|
||||
vector<int> pos;
|
||||
ASSERT_PRED_FORMAT2(cvtest::MatComparator(maxErr, op->context), dst0, dst) << "\nsrc[0] ~ " << cvtest::MatInfo(!src.empty() ? src[0] : Mat()) << "\ntestCase #" << testIdx << "\n";
|
||||
ASSERT_PRED_FORMAT2(cvtest::MatComparator(maxErr, op->context), dst0, dst) << "\nsrc[0] ~ " <<
|
||||
cvtest::MatInfo(!src.empty() ? src[0] : Mat()) << "\ntestCase #" << testIdx << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1500,7 +1501,7 @@ protected:
|
||||
}
|
||||
Mat d1;
|
||||
d.convertTo(d1, depth);
|
||||
CV_Assert( norm(c, d1, CV_C) <= DBL_EPSILON );
|
||||
CV_Assert( cvtest::norm(c, d1, CV_C) <= DBL_EPSILON );
|
||||
}
|
||||
|
||||
Mat_<uchar> tmpSrc(100,100);
|
||||
@@ -1574,7 +1575,7 @@ TEST_P(Mul1, One)
|
||||
|
||||
cv::multiply(3, src, dst);
|
||||
|
||||
ASSERT_EQ(0, cv::norm(dst, ref_dst, cv::NORM_INF));
|
||||
ASSERT_EQ(0, cvtest::norm(dst, ref_dst, cv::NORM_INF));
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Arithm, Mul1, testing::Values(Size(2, 2), Size(1, 1)));
|
||||
|
@@ -855,7 +855,7 @@ protected:
|
||||
merge(mv, 2, srcz);
|
||||
dft(srcz, dstz);
|
||||
dft(src, dst, DFT_COMPLEX_OUTPUT);
|
||||
if(norm(dst, dstz, NORM_INF) > 1e-3)
|
||||
if (cvtest::norm(dst, dstz, NORM_INF) > 1e-3)
|
||||
{
|
||||
cout << "actual:\n" << dst << endl << endl;
|
||||
cout << "reference:\n" << dstz << endl << endl;
|
||||
|
@@ -175,7 +175,7 @@ bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues
|
||||
{
|
||||
std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl;
|
||||
std::cout << "Number of rows: " << evalues.rows << " Number of cols: " << evalues.cols << endl;
|
||||
std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl;
|
||||
std::cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl;
|
||||
CV_Error(CORE_EIGEN_ERROR_COUNT, MESSAGE_ERROR_COUNT);
|
||||
return false;
|
||||
}
|
||||
@@ -187,7 +187,7 @@ bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues
|
||||
int n = src.rows, s = sign(high_index);
|
||||
int right_eigen_pair_count = n - max<int>(0, low_index) - ((int)((n/2.0)*(s*s-s)) + (1+s-s*s)*(n - (high_index+1)));
|
||||
|
||||
if (!((evectors.rows == right_eigen_pair_count) && (evectors.cols == right_eigen_pair_count)))
|
||||
if (!(evectors.rows == right_eigen_pair_count && evectors.cols == right_eigen_pair_count))
|
||||
{
|
||||
std::cout << endl; std::cout << "Checking sizes of eigen vectors matrix " << evectors << "..." << endl;
|
||||
std::cout << "Number of rows: " << evectors.rows << " Number of cols: " << evectors.cols << endl;
|
||||
@@ -196,7 +196,7 @@ bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!((evalues.rows == right_eigen_pair_count) && (evalues.cols == 1)))
|
||||
if (!(evalues.rows == right_eigen_pair_count && evalues.cols == 1))
|
||||
{
|
||||
std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl;
|
||||
std::cout << "Number of rows: " << evalues.rows << " Number of cols: " << evalues.cols << endl;
|
||||
@@ -212,9 +212,9 @@ void Core_EigenTest::print_information(const size_t norm_idx, const cv::Mat& src
|
||||
{
|
||||
switch (NORM_TYPE[norm_idx])
|
||||
{
|
||||
case cv::NORM_L1: {std::cout << "L1"; break;}
|
||||
case cv::NORM_L2: {std::cout << "L2"; break;}
|
||||
case cv::NORM_INF: {std::cout << "INF"; break;}
|
||||
case cv::NORM_L1: std::cout << "L1"; break;
|
||||
case cv::NORM_L2: std::cout << "L2"; break;
|
||||
case cv::NORM_INF: std::cout << "INF"; break;
|
||||
default: break;
|
||||
}
|
||||
|
||||
@@ -234,7 +234,7 @@ bool Core_EigenTest::check_orthogonality(const cv::Mat& U)
|
||||
|
||||
for (int i = 0; i < COUNT_NORM_TYPES; ++i)
|
||||
{
|
||||
double diff = cv::norm(UUt, E, NORM_TYPE[i]);
|
||||
double diff = cvtest::norm(UUt, E, NORM_TYPE[i]);
|
||||
if (diff > eps_vec)
|
||||
{
|
||||
std::cout << endl; std::cout << "Checking orthogonality of matrix " << U << ": ";
|
||||
@@ -271,12 +271,12 @@ bool Core_EigenTest::check_pairs_order(const cv::Mat& eigen_values)
|
||||
for (int i = 0; i < (int)(eigen_values.total() - 1); ++i)
|
||||
if (!(eigen_values.at<double>(i, 0) > eigen_values.at<double>(i+1, 0)))
|
||||
{
|
||||
std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl;
|
||||
std::cout << "Pair of indexes with non ascending of eigen values: (" << i << ", " << i+1 << ")." << endl;
|
||||
std::cout << endl;
|
||||
CV_Error(CORE_EIGEN_ERROR_ORDER, "Eigen values are not sorted in ascending order.");
|
||||
return false;
|
||||
}
|
||||
std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl;
|
||||
std::cout << "Pair of indexes with non ascending of eigen values: (" << i << ", " << i+1 << ")." << endl;
|
||||
std::cout << endl;
|
||||
CV_Error(CORE_EIGEN_ERROR_ORDER, "Eigen values are not sorted in ascending order.");
|
||||
return false;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
@@ -296,11 +296,14 @@ bool Core_EigenTest::test_pairs(const cv::Mat& src)
|
||||
|
||||
cv::eigen(src, eigen_values, eigen_vectors);
|
||||
|
||||
if (!check_pair_count(src, eigen_values, eigen_vectors)) return false;
|
||||
if (!check_pair_count(src, eigen_values, eigen_vectors))
|
||||
return false;
|
||||
|
||||
if (!check_orthogonality (eigen_vectors)) return false;
|
||||
if (!check_orthogonality (eigen_vectors))
|
||||
return false;
|
||||
|
||||
if (!check_pairs_order(eigen_values)) return false;
|
||||
if (!check_pairs_order(eigen_values))
|
||||
return false;
|
||||
|
||||
cv::Mat eigen_vectors_t; cv::transpose(eigen_vectors, eigen_vectors_t);
|
||||
|
||||
@@ -340,7 +343,7 @@ bool Core_EigenTest::test_pairs(const cv::Mat& src)
|
||||
|
||||
for (int i = 0; i < COUNT_NORM_TYPES; ++i)
|
||||
{
|
||||
double diff = cv::norm(disparity, NORM_TYPE[i]);
|
||||
double diff = cvtest::norm(disparity, NORM_TYPE[i]);
|
||||
if (diff > eps_vec)
|
||||
{
|
||||
std::cout << endl; std::cout << "Checking accuracy of eigen vectors computing for matrix " << src << ": ";
|
||||
@@ -369,7 +372,7 @@ bool Core_EigenTest::test_values(const cv::Mat& src)
|
||||
|
||||
for (int i = 0; i < COUNT_NORM_TYPES; ++i)
|
||||
{
|
||||
double diff = cv::norm(eigen_values_1, eigen_values_2, NORM_TYPE[i]);
|
||||
double diff = cvtest::norm(eigen_values_1, eigen_values_2, NORM_TYPE[i]);
|
||||
if (diff > eps_val)
|
||||
{
|
||||
std::cout << endl; std::cout << "Checking accuracy of eigen values computing for matrix " << src << ": ";
|
||||
|
@@ -480,9 +480,9 @@ protected:
|
||||
fs["g1"] >> og1;
|
||||
CV_Assert( mi2.empty() );
|
||||
CV_Assert( mv2.empty() );
|
||||
CV_Assert( norm(mi3, mi4, CV_C) == 0 );
|
||||
CV_Assert( cvtest::norm(Mat(mi3), Mat(mi4), CV_C) == 0 );
|
||||
CV_Assert( mv4.size() == 1 );
|
||||
double n = norm(mv3[0], mv4[0], CV_C);
|
||||
double n = cvtest::norm(mv3[0], mv4[0], CV_C);
|
||||
CV_Assert( vudt2.empty() );
|
||||
CV_Assert( vudt3 == vudt4 );
|
||||
CV_Assert( n == 0 );
|
||||
|
@@ -340,7 +340,7 @@ protected:
|
||||
Mat Qv = Q * v;
|
||||
|
||||
Mat lv = eval.at<float>(i,0) * v;
|
||||
err = norm( Qv, lv );
|
||||
err = cvtest::norm( Qv, lv, NORM_L2 );
|
||||
if( err > eigenEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of eigen(); err = %f\n", err );
|
||||
@@ -350,7 +350,7 @@ protected:
|
||||
}
|
||||
// check pca eigenvalues
|
||||
evalEps = 1e-6, evecEps = 1e-3;
|
||||
err = norm( rPCA.eigenvalues, subEval );
|
||||
err = cvtest::norm( rPCA.eigenvalues, subEval, NORM_L2 );
|
||||
if( err > evalEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "pca.eigenvalues is incorrect (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||||
@@ -362,11 +362,11 @@ protected:
|
||||
{
|
||||
Mat r0 = rPCA.eigenvectors.row(i);
|
||||
Mat r1 = subEvec.row(i);
|
||||
err = norm( r0, r1, CV_L2 );
|
||||
err = cvtest::norm( r0, r1, CV_L2 );
|
||||
if( err > evecEps )
|
||||
{
|
||||
r1 *= -1;
|
||||
double err2 = norm(r0, r1, CV_L2);
|
||||
double err2 = cvtest::norm(r0, r1, CV_L2);
|
||||
if( err2 > evecEps )
|
||||
{
|
||||
Mat tmp;
|
||||
@@ -390,7 +390,7 @@ protected:
|
||||
// check pca project
|
||||
Mat subEvec_t = subEvec.t();
|
||||
Mat prj = rTestPoints.row(i) - avg; prj *= subEvec_t;
|
||||
err = norm(rPrjTestPoints.row(i), prj, CV_RELATIVE_L2);
|
||||
err = cvtest::norm(rPrjTestPoints.row(i), prj, CV_RELATIVE_L2);
|
||||
if( err > prjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||||
@@ -399,7 +399,7 @@ protected:
|
||||
}
|
||||
// check pca backProject
|
||||
Mat backPrj = rPrjTestPoints.row(i) * subEvec + avg;
|
||||
err = norm( rBackPrjTestPoints.row(i), backPrj, CV_RELATIVE_L2 );
|
||||
err = cvtest::norm( rBackPrjTestPoints.row(i), backPrj, CV_RELATIVE_L2 );
|
||||
if( err > backPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||||
@@ -412,14 +412,14 @@ protected:
|
||||
cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, maxComponents );
|
||||
diffPrjEps = 1, diffBackPrjEps = 1;
|
||||
Mat ocvPrjTestPoints = cPCA.project(rTestPoints.t());
|
||||
err = norm(cv::abs(ocvPrjTestPoints), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 );
|
||||
err = cvtest::norm(cv::abs(ocvPrjTestPoints), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 );
|
||||
if( err > diffPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_COL); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
err = norm(cPCA.backProject(ocvPrjTestPoints), rBackPrjTestPoints.t(), CV_RELATIVE_L2 );
|
||||
err = cvtest::norm(cPCA.backProject(ocvPrjTestPoints), rBackPrjTestPoints.t(), CV_RELATIVE_L2 );
|
||||
if( err > diffBackPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_COL); err = %f\n", err );
|
||||
@@ -433,9 +433,9 @@ protected:
|
||||
Mat rvPrjTestPoints = cPCA.project(rTestPoints.t());
|
||||
|
||||
if( cPCA.eigenvectors.rows > maxComponents)
|
||||
err = norm(cv::abs(rvPrjTestPoints.rowRange(0,maxComponents)), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 );
|
||||
err = cvtest::norm(cv::abs(rvPrjTestPoints.rowRange(0,maxComponents)), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 );
|
||||
else
|
||||
err = norm(cv::abs(rvPrjTestPoints), cv::abs(rPrjTestPoints.colRange(0,cPCA.eigenvectors.rows).t()), CV_RELATIVE_L2 );
|
||||
err = cvtest::norm(cv::abs(rvPrjTestPoints), cv::abs(rPrjTestPoints.colRange(0,cPCA.eigenvectors.rows).t()), CV_RELATIVE_L2 );
|
||||
|
||||
if( err > diffPrjEps )
|
||||
{
|
||||
@@ -443,7 +443,7 @@ protected:
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
err = norm(cPCA.backProject(rvPrjTestPoints), rBackPrjTestPoints.t(), CV_RELATIVE_L2 );
|
||||
err = cvtest::norm(cPCA.backProject(rvPrjTestPoints), rBackPrjTestPoints.t(), CV_RELATIVE_L2 );
|
||||
if( err > diffBackPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_COL); retainedVariance=0.95; err = %f\n", err );
|
||||
@@ -467,14 +467,14 @@ protected:
|
||||
cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints );
|
||||
cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints );
|
||||
|
||||
err = norm(prjTestPoints, rPrjTestPoints, CV_RELATIVE_L2);
|
||||
err = cvtest::norm(prjTestPoints, rPrjTestPoints, CV_RELATIVE_L2);
|
||||
if( err > diffPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
err = norm(backPrjTestPoints, rBackPrjTestPoints, CV_RELATIVE_L2);
|
||||
err = cvtest::norm(backPrjTestPoints, rBackPrjTestPoints, CV_RELATIVE_L2);
|
||||
if( err > diffBackPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||||
@@ -495,14 +495,14 @@ protected:
|
||||
cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints );
|
||||
cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints );
|
||||
|
||||
err = norm(cv::abs(prjTestPoints), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 );
|
||||
err = cvtest::norm(cv::abs(prjTestPoints), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 );
|
||||
if( err > diffPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_COL); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
err = norm(backPrjTestPoints, rBackPrjTestPoints.t(), CV_RELATIVE_L2);
|
||||
err = cvtest::norm(backPrjTestPoints, rBackPrjTestPoints.t(), CV_RELATIVE_L2);
|
||||
if( err > diffBackPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_COL); err = %f\n", err );
|
||||
@@ -518,19 +518,19 @@ protected:
|
||||
PCA lPCA;
|
||||
fs.open( "PCA_store.yml", FileStorage::READ );
|
||||
lPCA.read( fs.root() );
|
||||
err = norm( rPCA.eigenvectors, lPCA.eigenvectors, CV_RELATIVE_L2 );
|
||||
err = cvtest::norm( rPCA.eigenvectors, lPCA.eigenvectors, CV_RELATIVE_L2 );
|
||||
if( err > 0 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of write/load functions (YML); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
}
|
||||
err = norm( rPCA.eigenvalues, lPCA.eigenvalues, CV_RELATIVE_L2 );
|
||||
err = cvtest::norm( rPCA.eigenvalues, lPCA.eigenvalues, CV_RELATIVE_L2 );
|
||||
if( err > 0 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of write/load functions (YML); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
}
|
||||
err = norm( rPCA.mean, lPCA.mean, CV_RELATIVE_L2 );
|
||||
err = cvtest::norm( rPCA.mean, lPCA.mean, CV_RELATIVE_L2 );
|
||||
if( err > 0 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of write/load functions (YML); err = %f\n", err );
|
||||
@@ -731,9 +731,9 @@ void Core_ArrayOpTest::run( int /* start_from */)
|
||||
}
|
||||
|
||||
minMaxLoc(_all_vals, &min_val, &max_val);
|
||||
double _norm0 = norm(_all_vals, CV_C);
|
||||
double _norm1 = norm(_all_vals, CV_L1);
|
||||
double _norm2 = norm(_all_vals, CV_L2);
|
||||
double _norm0 = cvtest::norm(_all_vals, CV_C);
|
||||
double _norm1 = cvtest::norm(_all_vals, CV_L1);
|
||||
double _norm2 = cvtest::norm(_all_vals, CV_L2);
|
||||
|
||||
for( i = 0; i < nz0; i++ )
|
||||
{
|
||||
|
@@ -2433,7 +2433,7 @@ protected:
|
||||
}
|
||||
|
||||
Mat convertedRes = resInRad * 180. / CV_PI;
|
||||
double normDiff = norm(convertedRes - resInDeg, NORM_INF);
|
||||
double normDiff = cvtest::norm(convertedRes - resInDeg, NORM_INF);
|
||||
if(normDiff > FLT_EPSILON * 180.)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "There are incorrect result angles (in radians)\n");
|
||||
@@ -2569,11 +2569,11 @@ TEST(Core_Invert, small)
|
||||
cv::Mat b = a.t()*a;
|
||||
cv::Mat c, i = Mat_<float>::eye(3, 3);
|
||||
cv::invert(b, c, cv::DECOMP_LU); //std::cout << b*c << std::endl;
|
||||
ASSERT_LT( cv::norm(b*c, i, CV_C), 0.1 );
|
||||
ASSERT_LT( cvtest::norm(b*c, i, CV_C), 0.1 );
|
||||
cv::invert(b, c, cv::DECOMP_SVD); //std::cout << b*c << std::endl;
|
||||
ASSERT_LT( cv::norm(b*c, i, CV_C), 0.1 );
|
||||
ASSERT_LT( cvtest::norm(b*c, i, CV_C), 0.1 );
|
||||
cv::invert(b, c, cv::DECOMP_CHOLESKY); //std::cout << b*c << std::endl;
|
||||
ASSERT_LT( cv::norm(b*c, i, CV_C), 0.1 );
|
||||
ASSERT_LT( cvtest::norm(b*c, i, CV_C), 0.1 );
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@@ -2621,7 +2621,7 @@ TEST(Core_SVD, flt)
|
||||
Mat X, B1;
|
||||
solve(A, B, X, DECOMP_SVD);
|
||||
B1 = A*X;
|
||||
EXPECT_LE(norm(B1, B, NORM_L2 + NORM_RELATIVE), FLT_EPSILON*10);
|
||||
EXPECT_LE(cvtest::norm(B1, B, NORM_L2 + NORM_RELATIVE), FLT_EPSILON*10);
|
||||
}
|
||||
|
||||
|
||||
|
@@ -83,11 +83,11 @@ protected:
|
||||
|
||||
void checkDiff(const Mat& m1, const Mat& m2, const string& s)
|
||||
{
|
||||
if (norm(m1, m2, NORM_INF) != 0) throw test_excep(s);
|
||||
if (cvtest::norm(m1, m2, NORM_INF) != 0) throw test_excep(s);
|
||||
}
|
||||
void checkDiffF(const Mat& m1, const Mat& m2, const string& s)
|
||||
{
|
||||
if (norm(m1, m2, NORM_INF) > 1e-5) throw test_excep(s);
|
||||
if (cvtest::norm(m1, m2, NORM_INF) > 1e-5) throw test_excep(s);
|
||||
}
|
||||
};
|
||||
|
||||
@@ -488,7 +488,7 @@ bool CV_OperationsTest::TestSubMatAccess()
|
||||
coords.push_back(T_bs(i));
|
||||
//std::cout << T_bs1(i) << std::endl;
|
||||
}
|
||||
CV_Assert( norm(coords, T_bs.reshape(1,1), NORM_INF) == 0 );
|
||||
CV_Assert( cvtest::norm(coords, T_bs.reshape(1,1), NORM_INF) == 0 );
|
||||
}
|
||||
catch (const test_excep& e)
|
||||
{
|
||||
@@ -776,14 +776,14 @@ bool CV_OperationsTest::TestTemplateMat()
|
||||
mvf.push_back(Mat_<float>::zeros(4, 3));
|
||||
merge(mvf, mf2);
|
||||
split(mf2, mvf2);
|
||||
CV_Assert( norm(mvf2[0], mvf[0], CV_C) == 0 &&
|
||||
norm(mvf2[1], mvf[1], CV_C) == 0 );
|
||||
CV_Assert( cvtest::norm(mvf2[0], mvf[0], CV_C) == 0 &&
|
||||
cvtest::norm(mvf2[1], mvf[1], CV_C) == 0 );
|
||||
|
||||
{
|
||||
Mat a(2,2,CV_32F,1.f);
|
||||
Mat b(1,2,CV_32F,1.f);
|
||||
Mat c = (a*b.t()).t();
|
||||
CV_Assert( norm(c, CV_L1) == 4. );
|
||||
CV_Assert( cvtest::norm(c, CV_L1) == 4. );
|
||||
}
|
||||
|
||||
bool badarg_catched = false;
|
||||
@@ -988,7 +988,7 @@ bool CV_OperationsTest::operations1()
|
||||
|
||||
Vec<double,10> v10dzero;
|
||||
for (int ii = 0; ii < 10; ++ii) {
|
||||
if (!v10dzero[ii] == 0.0)
|
||||
if (v10dzero[ii] != 0.0)
|
||||
throw test_excep();
|
||||
}
|
||||
|
||||
@@ -1014,13 +1014,13 @@ bool CV_OperationsTest::operations1()
|
||||
Matx33f b(1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f);
|
||||
Mat c;
|
||||
add(Mat::zeros(3, 3, CV_32F), b, c);
|
||||
CV_Assert( norm(b, c, CV_C) == 0 );
|
||||
CV_Assert( cvtest::norm(b, c, CV_C) == 0 );
|
||||
|
||||
add(Mat::zeros(3, 3, CV_64F), b, c, noArray(), c.type());
|
||||
CV_Assert( norm(b, c, CV_C) == 0 );
|
||||
CV_Assert( cvtest::norm(b, c, CV_C) == 0 );
|
||||
|
||||
add(Mat::zeros(6, 1, CV_64F), 1, c, noArray(), c.type());
|
||||
CV_Assert( norm(Matx61f(1.f, 1.f, 1.f, 1.f, 1.f, 1.f), c, CV_C) == 0 );
|
||||
CV_Assert( cvtest::norm(Matx61f(1.f, 1.f, 1.f, 1.f, 1.f, 1.f), c, CV_C) == 0 );
|
||||
|
||||
vector<Point2f> pt2d(3);
|
||||
vector<Point3d> pt3d(2);
|
||||
@@ -1066,11 +1066,11 @@ bool CV_OperationsTest::TestSVD()
|
||||
Mat A = (Mat_<double>(3,4) << 1, 2, -1, 4, 2, 4, 3, 5, -1, -2, 6, 7);
|
||||
Mat x;
|
||||
SVD::solveZ(A,x);
|
||||
if( norm(A*x, CV_C) > FLT_EPSILON )
|
||||
if( cvtest::norm(A*x, CV_C) > FLT_EPSILON )
|
||||
throw test_excep();
|
||||
|
||||
SVD svd(A, SVD::FULL_UV);
|
||||
if( norm(A*svd.vt.row(3).t(), CV_C) > FLT_EPSILON )
|
||||
if( cvtest::norm(A*svd.vt.row(3).t(), CV_C) > FLT_EPSILON )
|
||||
throw test_excep();
|
||||
|
||||
Mat Dp(3,3,CV_32FC1);
|
||||
@@ -1094,11 +1094,11 @@ bool CV_OperationsTest::TestSVD()
|
||||
W=decomp.w;
|
||||
Mat I = Mat::eye(3, 3, CV_32F);
|
||||
|
||||
if( norm(U*U.t(), I, CV_C) > FLT_EPSILON ||
|
||||
norm(Vt*Vt.t(), I, CV_C) > FLT_EPSILON ||
|
||||
if( cvtest::norm(U*U.t(), I, CV_C) > FLT_EPSILON ||
|
||||
cvtest::norm(Vt*Vt.t(), I, CV_C) > FLT_EPSILON ||
|
||||
W.at<float>(2) < 0 || W.at<float>(1) < W.at<float>(2) ||
|
||||
W.at<float>(0) < W.at<float>(1) ||
|
||||
norm(U*Mat::diag(W)*Vt, Q, CV_C) > FLT_EPSILON )
|
||||
cvtest::norm(U*Mat::diag(W)*Vt, Q, CV_C) > FLT_EPSILON )
|
||||
throw test_excep();
|
||||
}
|
||||
catch(const test_excep&)
|
||||
|
@@ -174,7 +174,7 @@ void Core_RandTest::run( int )
|
||||
}
|
||||
}
|
||||
|
||||
if( maxk >= 1 && norm(arr[0], arr[1], NORM_INF) > eps)
|
||||
if( maxk >= 1 && cvtest::norm(arr[0], arr[1], NORM_INF) > eps)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "RNG output depends on the array lengths (some generated numbers get lost?)" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
|
@@ -563,12 +563,12 @@ protected:
|
||||
|
||||
void checkDiff(const Mat& m1, const Mat& m2, const string& s)
|
||||
{
|
||||
if (norm(m1, m2, NORM_INF) != 0)
|
||||
if (cvtest::norm(m1, m2, NORM_INF) != 0)
|
||||
throw test_excep(s);
|
||||
}
|
||||
void checkDiffF(const Mat& m1, const Mat& m2, const string& s)
|
||||
{
|
||||
if (norm(m1, m2, NORM_INF) > 1e-5)
|
||||
if (cvtest::norm(m1, m2, NORM_INF) > 1e-5)
|
||||
throw test_excep(s);
|
||||
}
|
||||
};
|
||||
@@ -721,7 +721,7 @@ TEST(Core_UMat, getUMat)
|
||||
um.setTo(17);
|
||||
}
|
||||
|
||||
double err = norm(m, ref, NORM_INF);
|
||||
double err = cvtest::norm(m, ref, NORM_INF);
|
||||
if (err > 0)
|
||||
{
|
||||
std::cout << "m: " << std::endl << m << std::endl;
|
||||
@@ -742,7 +742,7 @@ TEST(UMat, Sync)
|
||||
|
||||
um.setTo(cv::Scalar::all(19));
|
||||
|
||||
EXPECT_EQ(0, cv::norm(um.getMat(ACCESS_READ), cv::Mat(um.size(), um.type(), 19), NORM_INF));
|
||||
EXPECT_EQ(0, cvtest::norm(um.getMat(ACCESS_READ), cv::Mat(um.size(), um.type(), 19), NORM_INF));
|
||||
}
|
||||
|
||||
TEST(UMat, setOpenCL)
|
||||
|
Reference in New Issue
Block a user