Cleaning the code of simplex method

In particular, the following things are done:
*) Consistent tabulation of 4 spaces is ensured
*) New function dprintf() is introduced, so now printing of the debug
information can be turned on/off via the ALEX_DEBUG macro
*) Removed solveLP_aux namespace
*) All auxiliary functions are declared as static
*) The return codes of solveLP() are encapsulated in enum.
This commit is contained in:
Alex Leontiev
2013-07-10 20:11:52 +03:00
parent a4a5e98cc0
commit a95650111f
5 changed files with 193 additions and 118 deletions

View File

@@ -2,73 +2,87 @@
#include "precomp.hpp"
#include <climits>
#include <algorithm>
#include <cstdarg>
namespace cv{namespace optim{
using std::vector;
double LPSolver::solve(const Function& F,const Constraints& C, OutputArray result)const{
const void dprintf(const char* format,...){
#ifdef ALEX_DEBUG
va_list args;
va_start (args,format);
vprintf(format,args);
va_end(args);
#endif
}
double LPSolver::solve(const Function& F,const Constraints& C, OutputArray result)const{
return 0.0;
}
double LPSolver::LPFunction::calc(InputArray args)const{
printf("call to LPFunction::calc()\n");
dprintf("call to LPFunction::calc()\n");
return 0.0;
}
void print_matrix(const Mat& X){
printf("\ttype:%d vs %d,\tsize: %d-on-%d\n",X.type(),CV_64FC1,X.rows,X.cols);
void const print_matrix(const Mat& X){
#ifdef ALEX_DEBUG
dprintf("\ttype:%d vs %d,\tsize: %d-on-%d\n",X.type(),CV_64FC1,X.rows,X.cols);
for(int i=0;i<X.rows;i++){
printf("\t[");
dprintf("\t[");
for(int j=0;j<X.cols;j++){
printf("%g, ",X.at<double>(i,j));
dprintf("%g, ",X.at<double>(i,j));
}
printf("]\n");
dprintf("]\n");
}
#endif
}
void print_simplex_state(const Mat& c,const Mat&b,double v,const vector<int>& N,const vector<int>& B){
printf("\tprint simplex state\n");
printf("v=%g\n",v);
void const print_simplex_state(const Mat& c,const Mat&b,double v,const vector<int>& N,const vector<int>& B){
#ifdef ALEX_DEBUG
dprintf("\tprint simplex state\n");
printf("here c goes\n");
dprintf("v=%g\n",v);
dprintf("here c goes\n");
print_matrix(c);
printf("non-basic: ");
dprintf("non-basic: ");
for (std::vector<int>::const_iterator it = N.begin() ; it != N.end(); ++it){
printf("%d, ",*it);
dprintf("%d, ",*it);
}
printf("\n");
dprintf("\n");
printf("here b goes\n");
dprintf("here b goes\n");
print_matrix(b);
printf("basic: ");
dprintf("basic: ");
for (std::vector<int>::const_iterator it = B.begin() ; it != B.end(); ++it){
printf("%d, ",*it);
dprintf("%d, ",*it);
}
printf("\n");
dprintf("\n");
#endif
}
namespace solveLP_aux{
/**Due to technical considerations, the format of input b and c is somewhat special:
*both b and c should be one column bigger than corresponding b and c of linear problem and the leftmost column will be used internally
by this procedure - it should not be cleaned before the call to procedure and may contain mess after
it also initializes N and B and does not make any assumptions about their init values
* @return -1 if problem is unfeasible, 0 if feasible.
*/
int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B);
inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B, int leaving_index,int entering_index);
/**@return -2 means the problem is unbdd, 1 means multiple solutions, 0 means successful.
*/
int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B);
void swap_columns(Mat_<double>& A,int col1,int col2);
}
/**Due to technical considerations, the format of input b and c is somewhat special:
*both b and c should be one column bigger than corresponding b and c of linear problem and the leftmost column will be used internally
by this procedure - it should not be cleaned before the call to procedure and may contain mess after
it also initializes N and B and does not make any assumptions about their init values
* @return SOLVELP_UNFEASIBLE if problem is unfeasible, 0 if feasible.
*/
const int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B);
const inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B, int leaving_index,int entering_index);
/**@return SOLVELP_UNBOUNDED means the problem is unbdd, SOLVELP_MULTI means multiple solutions, SOLVELP_SINGLE means one solution.
*/
const int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B);
const void swap_columns(Mat_<double>& A,int col1,int col2);
//return codes:-2 (no_sol - unbdd),-1(no_sol - unfsbl), 0(single_sol), 1(multiple_sol=>least_l2_norm)
int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
printf("call to solveLP\n");
dprintf("call to solveLP\n");
//sanity check (size, type, no. of channels) (and throw exception, if appropriate)
//sanity check (size, type, no. of channels)
CV_Assert(Func.type()==CV_64FC1);
CV_Assert(Constr.type()==CV_64FC1);
CV_Assert(Func.rows==1);
@@ -82,15 +96,15 @@ int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
double v=0;
vector<int> N,B;
if(solveLP_aux::initialize_simplex(bigC,bigB,v,N,B)==-1){
return -1;
if(initialize_simplex(bigC,bigB,v,N,B)==SOLVELP_UNFEASIBLE){
return SOLVELP_UNFEASIBLE;
}
Mat_<double> c=bigC.colRange(1,bigC.cols),
b=bigB.colRange(1,bigB.cols);
int res=0;
if((res=solveLP_aux::inner_simplex(c,b,v,N,B))==-2){
return -2;
if((res=inner_simplex(c,b,v,N,B))==SOLVELP_UNBOUNDED){
return SOLVELP_UNBOUNDED;
}
//return the optimal solution
@@ -109,7 +123,7 @@ int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
return res;
}
int solveLP_aux::initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B){
const int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B){
N.resize(c.cols);
N[0]=0;
for (std::vector<int>::iterator it = N.begin()+1 ; it != N.end(); ++it){
@@ -147,21 +161,21 @@ int solveLP_aux::initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,v
print_simplex_state(c,b,v,N,B);
printf("\tWE MAKE PIVOT\n");
dprintf("\tWE MAKE PIVOT\n");
pivot(c,b,v,N,B,k,0);
print_simplex_state(c,b,v,N,B);
inner_simplex(c,b,v,N,B);
printf("\tAFTER INNER_SIMPLEX\n");
dprintf("\tAFTER INNER_SIMPLEX\n");
print_simplex_state(c,b,v,N,B);
vector<int>::iterator it=std::find(B.begin(),B.end(),0);
if(it!=B.end()){
int it_offset=it-B.begin();
if(b(it_offset,b.cols-1)>0){
return -1;
return SOLVELP_UNFEASIBLE;
}
pivot(c,b,v,N,B,it_offset,0);
}
@@ -172,7 +186,7 @@ int solveLP_aux::initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,v
swap_columns(c,it_offset,0);
swap_columns(b,it_offset,0);
printf("after swaps\n");
dprintf("after swaps\n");
print_simplex_state(c,b,v,N,B);
//start from 1, because we ignore x_0
@@ -180,14 +194,14 @@ int solveLP_aux::initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,v
v=0;
for(int i=1;i<old_c.cols;i++){
if((it=std::find(N.begin(),N.end(),i))!=N.end()){
printf("i=%d from nonbasic\n",i);
dprintf("i=%d from nonbasic\n",i);
fflush(stdout);
int it_offset=it-N.begin();
c(0,it_offset)+=old_c(0,i);
print_matrix(c);
}else{
//cv::Mat_
printf("i=%d from basic\n",i);
dprintf("i=%d from basic\n",i);
fflush(stdout);
int it_offset=std::find(B.begin(),B.end(),i)-B.begin();
c-=old_c(0,i)*b.row(it_offset).colRange(0,b.cols-1);
@@ -196,19 +210,19 @@ int solveLP_aux::initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,v
}
}
printf("after restore\n");
dprintf("after restore\n");
print_simplex_state(c,b,v,N,B);
N.erase(N.begin());
return 0;
}
int solveLP_aux::inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B){
const int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B){
int count=0;
while(1){
printf("iteration #%d\n",count++);
dprintf("iteration #%d\n",count++);
MatIterator_<double> pos_ptr;
static MatIterator_<double> pos_ptr;
int e=-1,pos_ctr=0,min_var=INT_MAX;
bool all_nonzero=true;
for(pos_ptr=c.begin();pos_ptr!=c.end();pos_ptr++,pos_ctr++){
@@ -223,21 +237,15 @@ int solveLP_aux::inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector
}
}
if(e==-1){
printf("hello from e==-1\n");
dprintf("hello from e==-1\n");
print_matrix(c);
if(all_nonzero==true){
return 0;
return SOLVELP_SINGLE;
}else{
return 1;
return SOLVELP_MULTI;
}
}
/*for(pos_ptr=c.begin();(*pos_ptr<=0) && pos_ptr!=c.end();pos_ptr++,e++);//TODO: select the smallest index var w/ pos coef
if(pos_ptr==c.end()){
return 0;
}*/
int l=-1;
min_var=INT_MAX;
double min=DBL_MAX;
@@ -259,30 +267,29 @@ int solveLP_aux::inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector
}
}
if(l==-1){
//unbounded
return -2;
return SOLVELP_UNBOUNDED;
}
printf("the tightest constraint is in row %d with %g\n",l,min);
dprintf("the tightest constraint is in row %d with %g\n",l,min);
solveLP_aux::pivot(c,b,v,N,B,l,e);
pivot(c,b,v,N,B,l,e);
printf("objective, v=%g\n",v);
dprintf("objective, v=%g\n",v);
print_matrix(c);
printf("constraints\n");
dprintf("constraints\n");
print_matrix(b);
printf("non-basic: ");
dprintf("non-basic: ");
for (std::vector<int>::iterator it = N.begin() ; it != N.end(); ++it){
printf("%d, ",*it);
dprintf("%d, ",*it);
}
printf("\nbasic: ");
dprintf("\nbasic: ");
for (std::vector<int>::iterator it = B.begin() ; it != B.end(); ++it){
printf("%d, ",*it);
dprintf("%d, ",*it);
}
printf("\n");
dprintf("\n");
}
}
inline void solveLP_aux::pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B, int leaving_index,int entering_index){
const inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B, int leaving_index,int entering_index){
double coef=b(leaving_index,entering_index);
for(int i=0;i<b.cols;i++){
if(i==entering_index){
@@ -314,7 +321,7 @@ inline void solveLP_aux::pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<
c(0,i)-=coef*b(leaving_index,i);
}
}
printf("v was %g\n",v);
dprintf("v was %g\n",v);
v+=coef*b(leaving_index,b.cols-1);
int tmp=N[entering_index];
@@ -322,7 +329,7 @@ inline void solveLP_aux::pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<
B[leaving_index]=tmp;
}
void solveLP_aux::swap_columns(Mat_<double>& A,int col1,int col2){
const inline void swap_columns(Mat_<double>& A,int col1,int col2){
for(int i=0;i<A.rows;i++){
double tmp=A(i,col1);
A(i,col1)=A(i,col2);