Cleaning the code of simplex method
In particular, the following things are done: *) Consistent tabulation of 4 spaces is ensured *) New function dprintf() is introduced, so now printing of the debug information can be turned on/off via the ALEX_DEBUG macro *) Removed solveLP_aux namespace *) All auxiliary functions are declared as static *) The return codes of solveLP() are encapsulated in enum.
This commit is contained in:
@@ -47,67 +47,77 @@
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/core/mat.hpp"
|
||||
|
||||
/*! \namespace cv
|
||||
Namespace where all the C++ OpenCV functionality resides
|
||||
*/
|
||||
//uncomment the next line to print the debug info
|
||||
//#define ALEX_DEBUG
|
||||
|
||||
namespace cv{namespace optim
|
||||
{
|
||||
//! generic class for optimization algorithms */
|
||||
class CV_EXPORTS Solver : public Algorithm /* Algorithm is the base OpenCV class */
|
||||
{
|
||||
public:
|
||||
class CV_EXPORTS Function
|
||||
{
|
||||
public:
|
||||
public:
|
||||
class CV_EXPORTS Function
|
||||
{
|
||||
public:
|
||||
virtual ~Function(){}
|
||||
virtual double calc(InputArray args) const = 0;
|
||||
};
|
||||
class CV_EXPORTS Constraints
|
||||
{
|
||||
public:
|
||||
};
|
||||
class CV_EXPORTS Constraints
|
||||
{
|
||||
public:
|
||||
virtual ~Constraints(){}
|
||||
};
|
||||
};
|
||||
|
||||
//! could be reused for all the generic algorithms like downhill simplex. Return value is the maximum value of a function*/
|
||||
virtual double solve(const Function& F,const Constraints& C, OutputArray result) const = 0;
|
||||
//! could be reused for all the generic algorithms like downhill simplex. Return value is the maximum value of a function*/
|
||||
virtual double solve(const Function& F,const Constraints& C, OutputArray result) const = 0;
|
||||
|
||||
/*virtual void setTermCriteria(const TermCriteria& criteria) = 0;
|
||||
virtual TermCriteria getTermCriteria() = 0;*/
|
||||
/*virtual void setTermCriteria(const TermCriteria& criteria) = 0;
|
||||
virtual TermCriteria getTermCriteria() = 0;*/
|
||||
|
||||
// more detailed API to be defined later ...
|
||||
// more detailed API to be defined later ...
|
||||
};
|
||||
|
||||
class CV_EXPORTS LPSolver : public Solver
|
||||
{
|
||||
public:
|
||||
class CV_EXPORTS LPFunction:public Solver::Function
|
||||
{
|
||||
Mat z;
|
||||
public:
|
||||
//! Note, that this class is supposed to be immutable, so it's ok to make only a shallow copy of z_in.*/
|
||||
LPFunction(Mat z_in):z(z_in){}
|
||||
~LPFunction(){};
|
||||
const Mat& getz()const{return z;}
|
||||
double calc(InputArray args)const;
|
||||
};
|
||||
class CV_EXPORTS LPFunction:public Solver::Function
|
||||
{
|
||||
Mat z;
|
||||
public:
|
||||
//! Note, that this class is supposed to be immutable, so it's ok to make only a shallow copy of z_in.*/
|
||||
LPFunction(Mat z_in):z(z_in){}
|
||||
~LPFunction(){};
|
||||
const Mat& getz()const{return z;}
|
||||
double calc(InputArray args)const;
|
||||
};
|
||||
|
||||
//!This class represents constraints for linear problem. There are two matrix stored: m-by-n matrix A and n-by-1 column-vector b.
|
||||
//!What this represents is the set of constraints Ax\leq b and x\geq 0. It can be shown that any set of linear constraints can be converted
|
||||
//!this form and **we shall create various constructors for this class that will perform these conversions**.
|
||||
class CV_EXPORTS LPConstraints:public Solver::Constraints
|
||||
{
|
||||
Mat A,b;
|
||||
public:
|
||||
~LPConstraints(){};
|
||||
//! Note, that this class is supposed to be immutable, so it's ok to make only a shallow copy of A_in and b_in.*/
|
||||
LPConstraints(Mat A_in, Mat b_in):A(A_in),b(b_in){}
|
||||
const Mat& getA()const{return A;}
|
||||
const Mat& getb()const{return b;}
|
||||
};
|
||||
//!This class represents constraints for linear problem. There are two matrix stored: m-by-n matrix A and n-by-1 column-vector b.
|
||||
//!What this represents is the set of constraints Ax\leq b and x\geq 0. It can be shown that any set of linear constraints can be converted
|
||||
//!this form and **we shall create various constructors for this class that will perform these conversions**.
|
||||
class CV_EXPORTS LPConstraints:public Solver::Constraints
|
||||
{
|
||||
Mat A,b;
|
||||
public:
|
||||
~LPConstraints(){};
|
||||
//! Note, that this class is supposed to be immutable, so it's ok to make only a shallow copy of A_in and b_in.*/
|
||||
LPConstraints(Mat A_in, Mat b_in):A(A_in),b(b_in){}
|
||||
const Mat& getA()const{return A;}
|
||||
const Mat& getb()const{return b;}
|
||||
};
|
||||
|
||||
LPSolver(){}
|
||||
double solve(const Function& F,const Constraints& C, OutputArray result)const;
|
||||
LPSolver(){}
|
||||
double solve(const Function& F,const Constraints& C, OutputArray result)const;
|
||||
};
|
||||
|
||||
//!the return codes for solveLP() function
|
||||
enum
|
||||
{
|
||||
SOLVELP_UNBOUNDED = -2, //problem is unbounded (target function can achieve arbitrary high values)
|
||||
SOLVELP_UNFEASIBLE = -1, //problem is unfeasible (there are no points that satisfy all the constraints imposed)
|
||||
SOLVELP_SINGLE = 0, //there is only one maximum for target function
|
||||
SOLVELP_MULTI = 1 //there are multiple maxima for target function - the arbitrary one is returned
|
||||
};
|
||||
|
||||
CV_EXPORTS_W int solveLP(const Mat& Func, const Mat& Constr, Mat& z);
|
||||
}}// cv
|
||||
|
||||
|
Reference in New Issue
Block a user