amplement weidhting according to L. Bourdev and J. Brandt paper "Robust Object Detection Via Soft Cascade"
This commit is contained in:
parent
c091092174
commit
a8d0e04912
@ -158,7 +158,7 @@ protected:
|
||||
float predict( const Mat& _sample, const cv::Range range) const;
|
||||
private:
|
||||
void traverse(const CvBoostTree* tree, cv::FileStorage& fs, const float* th = 0) const;
|
||||
|
||||
virtual void initial_weights(double (&p)[2]);
|
||||
cv::Rect boundingBox;
|
||||
|
||||
int npositives;
|
||||
|
@ -295,6 +295,7 @@ void sft::Octave::generateNegatives(const Dataset& dataset)
|
||||
dprintf("Processing negatives finished:\n\trequested %d negatives, viewed %d samples.\n", nnegatives, total);
|
||||
}
|
||||
|
||||
|
||||
template <typename T> int sgn(T val) {
|
||||
return (T(0) < val) - (val < T(0));
|
||||
}
|
||||
@ -378,6 +379,13 @@ void sft::Octave::write( cv::FileStorage &fso, const Mat& thresholds) const
|
||||
<< "}";
|
||||
}
|
||||
|
||||
void sft::Octave::initial_weights(double (&p)[2])
|
||||
{
|
||||
double n = data->sample_count;
|
||||
p[0] = n / (double)(nnegatives) ;
|
||||
p[1] = n / (double)(npositives);
|
||||
}
|
||||
|
||||
bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool, int weaks, int treeDepth)
|
||||
{
|
||||
CV_Assert(treeDepth == 2);
|
||||
|
@ -1251,6 +1251,8 @@ protected:
|
||||
virtual void write_params( CvFileStorage* fs ) const;
|
||||
virtual void read_params( CvFileStorage* fs, CvFileNode* node );
|
||||
|
||||
virtual void initial_weights(double (&p)[2]);
|
||||
|
||||
CvDTreeTrainData* data;
|
||||
CvBoostParams params;
|
||||
CvSeq* weak;
|
||||
|
@ -1116,6 +1116,12 @@ bool CvBoost::train( CvMLData* _data,
|
||||
return result;
|
||||
}
|
||||
|
||||
void CvBoost::initial_weights(double (&p)[2])
|
||||
{
|
||||
p[0] = 1.;
|
||||
p[1] = 1.;
|
||||
}
|
||||
|
||||
void
|
||||
CvBoost::update_weights( CvBoostTree* tree )
|
||||
{
|
||||
@ -1159,8 +1165,9 @@ CvBoost::update_weights( CvBoostTree* tree )
|
||||
// in case of logitboost and gentle adaboost each weak tree is a regression tree,
|
||||
// so we need to convert class labels to floating-point values
|
||||
|
||||
double w0 = 1./n;
|
||||
double p[2] = { 1, 1 };
|
||||
double w0 = 1./ n;
|
||||
double p[2] = { 1., 1. };
|
||||
initial_weights(p);
|
||||
|
||||
cvReleaseMat( &orig_response );
|
||||
cvReleaseMat( &sum_response );
|
||||
|
Loading…
x
Reference in New Issue
Block a user