Storing PCA components and One Way descriptors in one yml file.
This commit is contained in:
parent
08c377cb48
commit
a702e5b2dc
@ -1024,6 +1024,12 @@ public:
|
||||
const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1,
|
||||
int pca_dim_high = 100, int pca_dim_low = 100);
|
||||
|
||||
|
||||
OneWayDescriptorBase(CvSize patch_size, int pose_count, const string &pca_filename, const string &train_path = string(), const string &images_list = string(),
|
||||
int pyr_levels = 1,
|
||||
int pca_dim_high = 100, int pca_dim_low = 100);
|
||||
|
||||
|
||||
~OneWayDescriptorBase();
|
||||
|
||||
// Allocate: allocates memory for a given number of descriptors
|
||||
@ -1111,6 +1117,15 @@ public:
|
||||
// - filename: output filename
|
||||
void SavePCADescriptors(const char* filename);
|
||||
|
||||
// SavePCADescriptors: saves PCA descriptors to a file storage
|
||||
// - fs: output file storage
|
||||
void SavePCADescriptors(CvFileStorage* fs);
|
||||
|
||||
// GeneratePCA: calculate and save PCA components and descriptors
|
||||
// - img_path: path to training PCA images directory
|
||||
// - images_list: filename with filenames of training PCA images
|
||||
void GeneratePCA(const char* img_path, const char* images_list);
|
||||
|
||||
// SetPCAHigh: sets the high resolution pca matrices (copied to internal structures)
|
||||
void SetPCAHigh(CvMat* avg, CvMat* eigenvectors);
|
||||
|
||||
@ -1129,6 +1144,8 @@ public:
|
||||
|
||||
void ConvertDescriptorsArrayToTree(); // Converting pca_descriptors array to KD tree
|
||||
|
||||
// GetPCAFilename: get default PCA filename
|
||||
static string GetPCAFilename () { return "pca.yml"; }
|
||||
|
||||
protected:
|
||||
CvSize m_patch_size; // patch size
|
||||
@ -1151,7 +1168,6 @@ protected:
|
||||
int m_pca_dim_low;
|
||||
|
||||
int m_pyr_levels;
|
||||
|
||||
};
|
||||
|
||||
class CV_EXPORTS OneWayDescriptorObject : public OneWayDescriptorBase
|
||||
@ -1168,6 +1184,11 @@ public:
|
||||
OneWayDescriptorObject(CvSize patch_size, int pose_count, const char* train_path, const char* pca_config,
|
||||
const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1);
|
||||
|
||||
|
||||
OneWayDescriptorObject(CvSize patch_size, int pose_count, const string &pca_filename,
|
||||
const string &train_path = string (), const string &images_list = string (), int pyr_levels = 1);
|
||||
|
||||
|
||||
~OneWayDescriptorObject();
|
||||
|
||||
// Allocate: allocates memory for a given number of features
|
||||
@ -1690,19 +1711,20 @@ public:
|
||||
|
||||
Params( int _poseCount = POSE_COUNT,
|
||||
Size _patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT),
|
||||
string _pcaFilename = string (),
|
||||
string _trainPath = string(),
|
||||
string _pcaConfig = string(), string _pcaHrConfig = string(),
|
||||
string _pcaDescConfig = string(),
|
||||
string _trainImagesList = string(),
|
||||
float _minScale = GET_MIN_SCALE(), float _maxScale = GET_MAX_SCALE(),
|
||||
float _stepScale = GET_STEP_SCALE() ) :
|
||||
poseCount(_poseCount), patchSize(_patchSize), trainPath(_trainPath),
|
||||
pcaConfig(_pcaConfig), pcaHrConfig(_pcaHrConfig), pcaDescConfig(_pcaDescConfig),
|
||||
poseCount(_poseCount), patchSize(_patchSize), pcaFilename(_pcaFilename),
|
||||
trainPath(_trainPath), trainImagesList(_trainImagesList),
|
||||
minScale(_minScale), maxScale(_maxScale), stepScale(_stepScale) {}
|
||||
|
||||
int poseCount;
|
||||
Size patchSize;
|
||||
string pcaFilename;
|
||||
string trainPath;
|
||||
string pcaConfig, pcaHrConfig, pcaDescConfig;
|
||||
string trainImagesList;
|
||||
|
||||
float minScale, maxScale, stepScale;
|
||||
};
|
||||
|
@ -203,9 +203,8 @@ void OneWayDescriptorMatch::initialize( const Params& _params)
|
||||
void OneWayDescriptorMatch::add( const Mat& image, vector<KeyPoint>& keypoints )
|
||||
{
|
||||
if( base.empty() )
|
||||
base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.trainPath.c_str(),
|
||||
params.pcaConfig.c_str(), params.pcaHrConfig.c_str(),
|
||||
params.pcaDescConfig.c_str());
|
||||
base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.pcaFilename,
|
||||
params.trainPath, params.trainImagesList);
|
||||
|
||||
size_t trainFeatureCount = keypoints.size();
|
||||
|
||||
@ -225,9 +224,8 @@ void OneWayDescriptorMatch::add( const Mat& image, vector<KeyPoint>& keypoints )
|
||||
void OneWayDescriptorMatch::add( KeyPointCollection& keypoints )
|
||||
{
|
||||
if( base.empty() )
|
||||
base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.trainPath.c_str(),
|
||||
params.pcaConfig.c_str(), params.pcaHrConfig.c_str(),
|
||||
params.pcaDescConfig.c_str());
|
||||
base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.pcaFilename,
|
||||
params.trainPath, params.trainImagesList);
|
||||
|
||||
size_t trainFeatureCount = keypoints.calcKeypointCount();
|
||||
|
||||
|
@ -139,7 +139,14 @@ namespace cv{
|
||||
}*/
|
||||
}
|
||||
|
||||
void readPCAFeatures(const char* filename, CvMat** avg, CvMat** eigenvectors);
|
||||
void readPCAFeatures(const char* filename, CvMat** avg, CvMat** eigenvectors, const char *postfix = "");
|
||||
void savePCAFeatures(FileStorage &fs, const char* postfix, CvMat* avg, CvMat* eigenvectors);
|
||||
void calcPCAFeatures(vector<IplImage*>& patches, FileStorage &fs, const char* postfix, CvMat** avg,
|
||||
CvMat** eigenvectors);
|
||||
void loadPCAFeatures(const char* path, const char* images_list, vector<IplImage*>& patches, CvSize patch_size);
|
||||
void generatePCAFeatures(const char* path, const char* img_filename, FileStorage& fs, const char* postfix,
|
||||
CvSize patch_size, CvMat** avg, CvMat** eigenvectors);
|
||||
|
||||
void eigenvector2image(CvMat* eigenvector, IplImage* img);
|
||||
|
||||
void FindOneWayDescriptor(int desc_count, const OneWayDescriptor* descriptors, IplImage* patch, int& desc_idx, int& pose_idx, float& distance,
|
||||
@ -1262,6 +1269,48 @@ namespace cv{
|
||||
|
||||
}
|
||||
|
||||
OneWayDescriptorBase::OneWayDescriptorBase(CvSize patch_size, int pose_count, const string &pca_filename,
|
||||
const string &train_path, const string &images_list, int pyr_levels,
|
||||
int pca_dim_high, int pca_dim_low) : m_pca_dim_high(pca_dim_high), m_pca_dim_low(pca_dim_low)
|
||||
{
|
||||
// m_pca_descriptors_matrix = 0;
|
||||
m_patch_size = patch_size;
|
||||
m_pose_count = pose_count;
|
||||
m_pyr_levels = pyr_levels;
|
||||
m_poses = 0;
|
||||
m_transforms = 0;
|
||||
|
||||
m_pca_avg = 0;
|
||||
m_pca_eigenvectors = 0;
|
||||
m_pca_hr_avg = 0;
|
||||
m_pca_hr_eigenvectors = 0;
|
||||
m_pca_descriptors = 0;
|
||||
|
||||
m_descriptors = 0;
|
||||
|
||||
CvFileStorage* fs = cvOpenFileStorage(pca_filename.c_str(), NULL, CV_STORAGE_READ);
|
||||
if (fs != 0)
|
||||
{
|
||||
cvReleaseFileStorage(&fs);
|
||||
|
||||
readPCAFeatures(pca_filename.c_str(), &m_pca_avg, &m_pca_eigenvectors, "_lr");
|
||||
readPCAFeatures(pca_filename.c_str(), &m_pca_hr_avg, &m_pca_hr_eigenvectors, "_hr");
|
||||
m_pca_descriptors = new OneWayDescriptor[m_pca_dim_high + 1];
|
||||
#if !defined(_GH_REGIONS)
|
||||
LoadPCADescriptors(pca_filename.c_str());
|
||||
#endif //_GH_REGIONS
|
||||
}
|
||||
else
|
||||
{
|
||||
GeneratePCA(train_path.c_str(), images_list.c_str());
|
||||
m_pca_descriptors = new OneWayDescriptor[m_pca_dim_high + 1];
|
||||
char pca_default_filename[1024];
|
||||
sprintf(pca_default_filename, "%s/%s", train_path.c_str(), GetPCAFilename().c_str());
|
||||
LoadPCADescriptors(pca_default_filename);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
OneWayDescriptorBase::~OneWayDescriptorBase()
|
||||
{
|
||||
cvReleaseMat(&m_pca_avg);
|
||||
@ -1555,19 +1604,169 @@ namespace cv{
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
void savePCAFeatures(FileStorage &fs, const char* postfix, CvMat* avg, CvMat* eigenvectors)
|
||||
{
|
||||
char buf[1024];
|
||||
sprintf(buf, "avg_%s", postfix);
|
||||
fs.writeObj(buf, avg);
|
||||
sprintf(buf, "eigenvectors_%s", postfix);
|
||||
fs.writeObj(buf, eigenvectors);
|
||||
}
|
||||
|
||||
void calcPCAFeatures(vector<IplImage*>& patches, FileStorage &fs, const char* postfix, CvMat** avg,
|
||||
CvMat** eigenvectors)
|
||||
{
|
||||
int width = patches[0]->width;
|
||||
int height = patches[0]->height;
|
||||
int length = width * height;
|
||||
int patch_count = (int)patches.size();
|
||||
|
||||
CvMat* data = cvCreateMat(patch_count, length, CV_32FC1);
|
||||
*avg = cvCreateMat(1, length, CV_32FC1);
|
||||
CvMat* eigenvalues = cvCreateMat(1, length, CV_32FC1);
|
||||
*eigenvectors = cvCreateMat(length, length, CV_32FC1);
|
||||
|
||||
for (int i = 0; i < patch_count; i++)
|
||||
{
|
||||
float sum = cvSum(patches[i]).val[0];
|
||||
for (int y = 0; y < height; y++)
|
||||
{
|
||||
for (int x = 0; x < width; x++)
|
||||
{
|
||||
*((float*)(data->data.ptr + data->step * i) + y * width + x)
|
||||
= (float)(unsigned char)patches[i]->imageData[y * patches[i]->widthStep + x] / sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//printf("Calculating PCA...");
|
||||
cvCalcPCA(data, *avg, eigenvalues, *eigenvectors, CV_PCA_DATA_AS_ROW);
|
||||
//printf("done\n");
|
||||
|
||||
// save pca data
|
||||
savePCAFeatures(fs, postfix, *avg, *eigenvectors);
|
||||
|
||||
cvReleaseMat(&data);
|
||||
cvReleaseMat(&eigenvalues);
|
||||
}
|
||||
|
||||
void loadPCAFeatures(const char* path, const char* images_list, vector<IplImage*>& patches, CvSize patch_size)
|
||||
{
|
||||
char images_filename[1024];
|
||||
sprintf(images_filename, "%s/%s", path, images_list);
|
||||
FILE *pFile = fopen(images_filename, "r");
|
||||
if (pFile == 0)
|
||||
{
|
||||
printf("Cannot open images list file %s\n", images_filename);
|
||||
return;
|
||||
}
|
||||
while (!feof(pFile))
|
||||
{
|
||||
char imagename[1024];
|
||||
if (fscanf(pFile, "%s", imagename) <= 0)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
char filename[1024];
|
||||
sprintf(filename, "%s/%s", path, imagename);
|
||||
|
||||
//printf("Reading image %s...", filename);
|
||||
IplImage* img = cvLoadImage(filename, CV_LOAD_IMAGE_GRAYSCALE);
|
||||
//printf("done\n");
|
||||
|
||||
vector<KeyPoint> features;
|
||||
SURF surf_extractor(1.0f);
|
||||
//printf("Extracting SURF features...");
|
||||
surf_extractor(img, Mat(), features);
|
||||
//printf("done\n");
|
||||
|
||||
for (int j = 0; j < (int)features.size(); j++)
|
||||
{
|
||||
int patch_width = patch_size.width;
|
||||
int patch_height = patch_size.height;
|
||||
|
||||
CvPoint center = features[j].pt;
|
||||
|
||||
CvRect roi = cvRect(center.x - patch_width / 2, center.y - patch_height / 2, patch_width, patch_height);
|
||||
cvSetImageROI(img, roi);
|
||||
roi = cvGetImageROI(img);
|
||||
if (roi.width != patch_width || roi.height != patch_height)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
IplImage* patch = cvCreateImage(cvSize(patch_width, patch_height), IPL_DEPTH_8U, 1);
|
||||
cvCopy(img, patch);
|
||||
patches.push_back(patch);
|
||||
cvResetImageROI(img);
|
||||
|
||||
}
|
||||
|
||||
//printf("Completed file, extracted %d features\n", (int)features.size());
|
||||
|
||||
cvReleaseImage(&img);
|
||||
}
|
||||
fclose(pFile);
|
||||
}
|
||||
|
||||
void generatePCAFeatures(const char* path, const char* img_filename, FileStorage& fs, const char* postfix,
|
||||
CvSize patch_size, CvMat** avg, CvMat** eigenvectors)
|
||||
{
|
||||
vector<IplImage*> patches;
|
||||
loadPCAFeatures(path, img_filename, patches, patch_size);
|
||||
calcPCAFeatures(patches, fs, postfix, avg, eigenvectors);
|
||||
}
|
||||
|
||||
void OneWayDescriptorBase::GeneratePCA(const char* img_path, const char* images_list)
|
||||
{
|
||||
char pca_filename[1024];
|
||||
sprintf(pca_filename, "%s/%s", img_path, GetPCAFilename().c_str());
|
||||
FileStorage fs = FileStorage(pca_filename, FileStorage::WRITE);
|
||||
|
||||
generatePCAFeatures(img_path, images_list, fs, "hr", m_patch_size, &m_pca_hr_avg, &m_pca_hr_eigenvectors);
|
||||
generatePCAFeatures(img_path, images_list, fs, "lr", cvSize(m_patch_size.width / 2, m_patch_size.height / 2),
|
||||
&m_pca_avg, &m_pca_eigenvectors);
|
||||
|
||||
const int pose_count = 500;
|
||||
OneWayDescriptorBase descriptors(m_patch_size, pose_count);
|
||||
descriptors.SetPCAHigh(m_pca_hr_avg, m_pca_hr_eigenvectors);
|
||||
descriptors.SetPCALow(m_pca_avg, m_pca_eigenvectors);
|
||||
|
||||
printf("Calculating %d PCA descriptors (you can grab a coffee, this will take a while)...\n",
|
||||
descriptors.GetPCADimHigh());
|
||||
descriptors.InitializePoseTransforms();
|
||||
descriptors.CreatePCADescriptors();
|
||||
descriptors.SavePCADescriptors(*fs);
|
||||
|
||||
fs.release();
|
||||
}
|
||||
|
||||
void OneWayDescriptorBase::SavePCADescriptors(const char* filename)
|
||||
{
|
||||
CvMemStorage* storage = cvCreateMemStorage();
|
||||
CvFileStorage* fs = cvOpenFileStorage(filename, storage, CV_STORAGE_WRITE);
|
||||
|
||||
SavePCADescriptors (fs);
|
||||
|
||||
cvReleaseMemStorage(&storage);
|
||||
cvReleaseFileStorage(&fs);
|
||||
}
|
||||
|
||||
void OneWayDescriptorBase::SavePCADescriptors(CvFileStorage *fs)
|
||||
{
|
||||
cvWriteInt(fs, "pca components number", m_pca_dim_high);
|
||||
cvWriteComment(fs, "The first component is the average Vector, so the total number of components is <pca components number> + 1", 0);
|
||||
cvWriteComment(
|
||||
fs,
|
||||
"The first component is the average Vector, so the total number of components is <pca components number> + 1",
|
||||
0);
|
||||
cvWriteInt(fs, "patch width", m_patch_size.width);
|
||||
cvWriteInt(fs, "patch height", m_patch_size.height);
|
||||
|
||||
// pack the affine transforms into a single CvMat and write them
|
||||
CvMat* poses = cvCreateMat(m_pose_count, 4, CV_32FC1);
|
||||
for(int i = 0; i < m_pose_count; i++)
|
||||
for (int i = 0; i < m_pose_count; i++)
|
||||
{
|
||||
cvmSet(poses, i, 0, m_poses[i].phi);
|
||||
cvmSet(poses, i, 1, m_poses[i].theta);
|
||||
@ -1577,17 +1776,15 @@ namespace cv{
|
||||
cvWrite(fs, "affine poses", poses);
|
||||
cvReleaseMat(&poses);
|
||||
|
||||
for(int i = 0; i < m_pca_dim_high + 1; i++)
|
||||
for (int i = 0; i < m_pca_dim_high + 1; i++)
|
||||
{
|
||||
char buf[1024];
|
||||
sprintf(buf, "descriptor for pca component %d", i);
|
||||
m_pca_descriptors[i].Write(fs, buf);
|
||||
}
|
||||
|
||||
cvReleaseMemStorage(&storage);
|
||||
cvReleaseFileStorage(&fs);
|
||||
}
|
||||
|
||||
|
||||
void OneWayDescriptorBase::Allocate(int train_feature_count)
|
||||
{
|
||||
m_train_feature_count = train_feature_count;
|
||||
@ -1728,6 +1925,14 @@ namespace cv{
|
||||
m_part_id = 0;
|
||||
}
|
||||
|
||||
OneWayDescriptorObject::OneWayDescriptorObject(CvSize patch_size, int pose_count, const string &pca_filename,
|
||||
const string &train_path, const string &images_list, int pyr_levels) :
|
||||
OneWayDescriptorBase(patch_size, pose_count, pca_filename, train_path, images_list, pyr_levels)
|
||||
{
|
||||
m_part_id = 0;
|
||||
}
|
||||
|
||||
|
||||
OneWayDescriptorObject::~OneWayDescriptorObject()
|
||||
{
|
||||
delete []m_part_id;
|
||||
@ -1771,19 +1976,22 @@ namespace cv{
|
||||
}
|
||||
}
|
||||
|
||||
void readPCAFeatures(const char* filename, CvMat** avg, CvMat** eigenvectors)
|
||||
void readPCAFeatures(const char* filename, CvMat** avg, CvMat** eigenvectors, const char* postfix)
|
||||
{
|
||||
CvMemStorage* storage = cvCreateMemStorage();
|
||||
CvFileStorage* fs = cvOpenFileStorage(filename, storage, CV_STORAGE_READ);
|
||||
if(!fs)
|
||||
if (!fs)
|
||||
{
|
||||
printf("Cannot open file %s! Exiting!", filename);
|
||||
cvReleaseMemStorage(&storage);
|
||||
}
|
||||
|
||||
CvFileNode* node = cvGetFileNodeByName(fs, 0, "avg");
|
||||
char buf[1024];
|
||||
sprintf(buf, "avg%s", postfix);
|
||||
CvFileNode* node = cvGetFileNodeByName(fs, 0, buf);
|
||||
CvMat* _avg = (CvMat*)cvRead(fs, node);
|
||||
node = cvGetFileNodeByName(fs, 0, "eigenvectors");
|
||||
sprintf(buf, "eigenvectors%s", postfix);
|
||||
node = cvGetFileNodeByName(fs, 0, buf);
|
||||
CvMat* _eigenvectors = (CvMat*)cvRead(fs, node);
|
||||
|
||||
*avg = cvCloneMat(_avg);
|
||||
|
@ -15,20 +15,16 @@
|
||||
|
||||
using namespace cv;
|
||||
|
||||
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1,
|
||||
IplImage* img2, const vector<KeyPoint>& features2, const vector<int>& desc_idx);
|
||||
void generatePCADescriptors(const char* img_path, const char* pca_low_filename, const char* pca_high_filename,
|
||||
const char* pca_desc_filename, CvSize patch_size);
|
||||
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* img2,
|
||||
const vector<KeyPoint>& features2, const vector<int>& desc_idx);
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
const char pca_high_filename[] = "pca_hr.yml";
|
||||
const char pca_low_filename[] = "pca_lr.yml";
|
||||
const char pca_desc_filename[] = "pca_descriptors.yml";
|
||||
const char images_list[] = "one_way_train_images.txt";
|
||||
const CvSize patch_size = cvSize(24, 24);
|
||||
const int pose_count = 50;
|
||||
|
||||
if(argc != 3 && argc != 4)
|
||||
if (argc != 3 && argc != 4)
|
||||
{
|
||||
printf("Format: \n./one_way_sample [path_to_samples] [image1] [image2]\n");
|
||||
printf("For example: ./one_way_sample ../../../opencv/samples/c scene_l.bmp scene_r.bmp\n");
|
||||
@ -39,18 +35,6 @@ int main(int argc, char** argv)
|
||||
std::string img1_name = path_name + "/" + std::string(argv[2]);
|
||||
std::string img2_name = path_name + "/" + std::string(argv[3]);
|
||||
|
||||
CvFileStorage* fs = cvOpenFileStorage("pca_hr.yml", NULL, CV_STORAGE_READ);
|
||||
if(fs == NULL)
|
||||
{
|
||||
printf("PCA data is not found, starting training...\n");
|
||||
generatePCADescriptors(path_name.c_str(), pca_low_filename, pca_high_filename, pca_desc_filename, patch_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
cvReleaseFileStorage(&fs);
|
||||
}
|
||||
|
||||
|
||||
printf("Reading the images...\n");
|
||||
IplImage* img1 = cvLoadImage(img1_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
|
||||
IplImage* img2 = cvLoadImage(img2_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
|
||||
@ -58,27 +42,16 @@ int main(int argc, char** argv)
|
||||
// extract keypoints from the first image
|
||||
SURF surf_extractor(5.0e3);
|
||||
vector<KeyPoint> keypoints1;
|
||||
#if 1
|
||||
Mat _img1(img1);
|
||||
vector<Point2f> corners;
|
||||
|
||||
goodFeaturesToTrack(_img1, corners, 200, 0.01, 20);
|
||||
for(size_t i = 0; i < corners.size(); i++)
|
||||
{
|
||||
KeyPoint p;
|
||||
p.pt = corners[i];
|
||||
keypoints1.push_back(p);
|
||||
}
|
||||
#else
|
||||
// printf("Extracting keypoints\n");
|
||||
// printf("Extracting keypoints\n");
|
||||
surf_extractor(img1, Mat(), keypoints1);
|
||||
#endif
|
||||
|
||||
printf("Extracted %d keypoints...\n", (int)keypoints1.size());
|
||||
|
||||
printf("Training one way descriptors...");
|
||||
printf("Training one way descriptors... \n");
|
||||
// create descriptors
|
||||
OneWayDescriptorBase descriptors(patch_size, pose_count, ".", pca_low_filename, pca_high_filename, pca_desc_filename);
|
||||
OneWayDescriptorBase descriptors(patch_size, pose_count, OneWayDescriptorBase::GetPCAFilename(), path_name,
|
||||
images_list);
|
||||
descriptors.CreateDescriptorsFromImage(img1, keypoints1);
|
||||
printf("done\n");
|
||||
|
||||
@ -87,12 +60,11 @@ int main(int argc, char** argv)
|
||||
surf_extractor(img2, Mat(), keypoints2);
|
||||
printf("Extracted %d keypoints from the second image...\n", (int)keypoints2.size());
|
||||
|
||||
|
||||
printf("Finding nearest neighbors...");
|
||||
// find NN for each of keypoints2 in keypoints1
|
||||
vector<int> desc_idx;
|
||||
desc_idx.resize(keypoints2.size());
|
||||
for(size_t i = 0; i < keypoints2.size(); i++)
|
||||
for (size_t i = 0; i < keypoints2.size(); i++)
|
||||
{
|
||||
int pose_idx = 0;
|
||||
float distance = 0;
|
||||
@ -111,21 +83,23 @@ int main(int argc, char** argv)
|
||||
cvReleaseImage(&img_corr);
|
||||
}
|
||||
|
||||
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* img2, const vector<KeyPoint>& features2, const vector<int>& desc_idx)
|
||||
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* img2,
|
||||
const vector<KeyPoint>& features2, const vector<int>& desc_idx)
|
||||
{
|
||||
IplImage* img_corr = cvCreateImage(cvSize(img1->width + img2->width, MAX(img1->height, img2->height)), IPL_DEPTH_8U, 3);
|
||||
IplImage* img_corr = cvCreateImage(cvSize(img1->width + img2->width, MAX(img1->height, img2->height)),
|
||||
IPL_DEPTH_8U, 3);
|
||||
cvSetImageROI(img_corr, cvRect(0, 0, img1->width, img1->height));
|
||||
cvCvtColor(img1, img_corr, CV_GRAY2RGB);
|
||||
cvSetImageROI(img_corr, cvRect(img1->width, 0, img2->width, img2->height));
|
||||
cvCvtColor(img2, img_corr, CV_GRAY2RGB);
|
||||
cvResetImageROI(img_corr);
|
||||
|
||||
for(size_t i = 0; i < features1.size(); i++)
|
||||
for (size_t i = 0; i < features1.size(); i++)
|
||||
{
|
||||
cvCircle(img_corr, features1[i].pt, 3, CV_RGB(255, 0, 0));
|
||||
}
|
||||
|
||||
for(size_t i = 0; i < features2.size(); i++)
|
||||
for (size_t i = 0; i < features2.size(); i++)
|
||||
{
|
||||
CvPoint pt = cvPoint(features2[i].pt.x + img1->width, features2[i].pt.y);
|
||||
cvCircle(img_corr, pt, 3, CV_RGB(255, 0, 0));
|
||||
@ -134,137 +108,3 @@ IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1,
|
||||
|
||||
return img_corr;
|
||||
}
|
||||
|
||||
/*
|
||||
* pca_features
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
void savePCAFeatures(const char* filename, CvMat* avg, CvMat* eigenvectors)
|
||||
{
|
||||
CvMemStorage* storage = cvCreateMemStorage();
|
||||
|
||||
CvFileStorage* fs = cvOpenFileStorage(filename, storage, CV_STORAGE_WRITE);
|
||||
cvWrite(fs, "avg", avg);
|
||||
cvWrite(fs, "eigenvectors", eigenvectors);
|
||||
cvReleaseFileStorage(&fs);
|
||||
|
||||
cvReleaseMemStorage(&storage);
|
||||
}
|
||||
|
||||
void calcPCAFeatures(vector<IplImage*>& patches, const char* filename, CvMat** avg, CvMat** eigenvectors)
|
||||
{
|
||||
int width = patches[0]->width;
|
||||
int height = patches[0]->height;
|
||||
int length = width*height;
|
||||
int patch_count = (int)patches.size();
|
||||
|
||||
CvMat* data = cvCreateMat(patch_count, length, CV_32FC1);
|
||||
*avg = cvCreateMat(1, length, CV_32FC1);
|
||||
CvMat* eigenvalues = cvCreateMat(1, length, CV_32FC1);
|
||||
*eigenvectors = cvCreateMat(length, length, CV_32FC1);
|
||||
|
||||
for(int i = 0; i < patch_count; i++)
|
||||
{
|
||||
float sum = cvSum(patches[i]).val[0];
|
||||
for(int y = 0; y < height; y++)
|
||||
{
|
||||
for(int x = 0; x < width; x++)
|
||||
{
|
||||
*((float*)(data->data.ptr + data->step*i) + y*width + x) = (float)(unsigned char)patches[i]->imageData[y*patches[i]->widthStep + x]/sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
printf("Calculating PCA...");
|
||||
cvCalcPCA(data, *avg, eigenvalues, *eigenvectors, CV_PCA_DATA_AS_ROW);
|
||||
printf("done\n");
|
||||
|
||||
// save pca data
|
||||
savePCAFeatures(filename, *avg, *eigenvectors);
|
||||
|
||||
cvReleaseMat(&data);
|
||||
cvReleaseMat(&eigenvalues);
|
||||
}
|
||||
|
||||
|
||||
void loadPCAFeatures(const char* path, vector<IplImage*>& patches, CvSize patch_size)
|
||||
{
|
||||
const int file_count = 2;
|
||||
for(int i = 0; i < file_count; i++)
|
||||
{
|
||||
char buf[1024];
|
||||
sprintf(buf, "%s/one_way_train_%04d.jpg", path, i);
|
||||
printf("Reading image %s...", buf);
|
||||
IplImage* img = cvLoadImage(buf, CV_LOAD_IMAGE_GRAYSCALE);
|
||||
printf("done\n");
|
||||
|
||||
vector<KeyPoint> features;
|
||||
SURF surf_extractor(1.0f);
|
||||
printf("Extracting SURF features...");
|
||||
surf_extractor(img, Mat(), features);
|
||||
printf("done\n");
|
||||
|
||||
for(int j = 0; j < (int)features.size(); j++)
|
||||
{
|
||||
int patch_width = patch_size.width;
|
||||
int patch_height = patch_size.height;
|
||||
|
||||
CvPoint center = features[j].pt;
|
||||
|
||||
CvRect roi = cvRect(center.x - patch_width/2, center.y - patch_height/2, patch_width, patch_height);
|
||||
cvSetImageROI(img, roi);
|
||||
roi = cvGetImageROI(img);
|
||||
if(roi.width != patch_width || roi.height != patch_height)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
IplImage* patch = cvCreateImage(cvSize(patch_width, patch_height), IPL_DEPTH_8U, 1);
|
||||
cvCopy(img, patch);
|
||||
patches.push_back(patch);
|
||||
cvResetImageROI(img);
|
||||
|
||||
}
|
||||
|
||||
printf("Completed file %d, extracted %d features\n", i, (int)features.size());
|
||||
|
||||
cvReleaseImage(&img);
|
||||
}
|
||||
}
|
||||
|
||||
void generatePCAFeatures(const char* img_filename, const char* pca_filename, CvSize patch_size, CvMat** avg, CvMat** eigenvectors)
|
||||
{
|
||||
vector<IplImage*> patches;
|
||||
loadPCAFeatures(img_filename, patches, patch_size);
|
||||
calcPCAFeatures(patches, pca_filename, avg, eigenvectors);
|
||||
}
|
||||
|
||||
void generatePCADescriptors(const char* img_path, const char* pca_low_filename, const char* pca_high_filename,
|
||||
const char* pca_desc_filename, CvSize patch_size)
|
||||
{
|
||||
CvMat* avg_hr;
|
||||
CvMat* eigenvectors_hr;
|
||||
generatePCAFeatures(img_path, pca_high_filename, patch_size, &avg_hr, &eigenvectors_hr);
|
||||
|
||||
CvMat* avg_lr;
|
||||
CvMat* eigenvectors_lr;
|
||||
generatePCAFeatures(img_path, pca_low_filename, cvSize(patch_size.width/2, patch_size.height/2),
|
||||
&avg_lr, &eigenvectors_lr);
|
||||
|
||||
const int pose_count = 500;
|
||||
OneWayDescriptorBase descriptors(patch_size, pose_count);
|
||||
descriptors.SetPCAHigh(avg_hr, eigenvectors_hr);
|
||||
descriptors.SetPCALow(avg_lr, eigenvectors_lr);
|
||||
|
||||
printf("Calculating %d PCA descriptors (you can grab a coffee, this will take a while)...\n", descriptors.GetPCADimHigh());
|
||||
descriptors.InitializePoseTransforms();
|
||||
descriptors.CreatePCADescriptors();
|
||||
descriptors.SavePCADescriptors(pca_desc_filename);
|
||||
|
||||
cvReleaseMat(&avg_hr);
|
||||
cvReleaseMat(&eigenvectors_hr);
|
||||
cvReleaseMat(&avg_lr);
|
||||
cvReleaseMat(&eigenvectors_lr);
|
||||
}
|
||||
|
2
samples/c/one_way_train_images.txt
Normal file
2
samples/c/one_way_train_images.txt
Normal file
@ -0,0 +1,2 @@
|
||||
one_way_train_0000.jpg
|
||||
one_way_train_0001.jpg
|
Loading…
x
Reference in New Issue
Block a user