gpuobjdetect module for object detection
This commit is contained in:
@@ -56,6 +56,7 @@
|
||||
#include "opencv2/gpufeatures2d.hpp"
|
||||
#include "opencv2/gpuvideo.hpp"
|
||||
#include "opencv2/gpucalib3d.hpp"
|
||||
#include "opencv2/gpuobjdetect.hpp"
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/objdetect.hpp"
|
||||
@@ -92,96 +93,7 @@ namespace cv { namespace gpu {
|
||||
|
||||
|
||||
|
||||
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
|
||||
struct CV_EXPORTS HOGConfidence
|
||||
{
|
||||
double scale;
|
||||
std::vector<Point> locations;
|
||||
std::vector<double> confidences;
|
||||
std::vector<double> part_scores[4];
|
||||
};
|
||||
|
||||
struct CV_EXPORTS HOGDescriptor
|
||||
{
|
||||
enum { DEFAULT_WIN_SIGMA = -1 };
|
||||
enum { DEFAULT_NLEVELS = 64 };
|
||||
enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
|
||||
|
||||
HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
|
||||
Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
|
||||
int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
|
||||
double threshold_L2hys=0.2, bool gamma_correction=true,
|
||||
int nlevels=DEFAULT_NLEVELS);
|
||||
|
||||
size_t getDescriptorSize() const;
|
||||
size_t getBlockHistogramSize() const;
|
||||
|
||||
void setSVMDetector(const std::vector<float>& detector);
|
||||
|
||||
static std::vector<float> getDefaultPeopleDetector();
|
||||
static std::vector<float> getPeopleDetector48x96();
|
||||
static std::vector<float> getPeopleDetector64x128();
|
||||
|
||||
void detect(const GpuMat& img, std::vector<Point>& found_locations,
|
||||
double hit_threshold=0, Size win_stride=Size(),
|
||||
Size padding=Size());
|
||||
|
||||
void detectMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
||||
double hit_threshold=0, Size win_stride=Size(),
|
||||
Size padding=Size(), double scale0=1.05,
|
||||
int group_threshold=2);
|
||||
|
||||
void computeConfidence(const GpuMat& img, std::vector<Point>& hits, double hit_threshold,
|
||||
Size win_stride, Size padding, std::vector<Point>& locations, std::vector<double>& confidences);
|
||||
|
||||
void computeConfidenceMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
||||
double hit_threshold, Size win_stride, Size padding,
|
||||
std::vector<HOGConfidence> &conf_out, int group_threshold);
|
||||
|
||||
void getDescriptors(const GpuMat& img, Size win_stride,
|
||||
GpuMat& descriptors,
|
||||
int descr_format=DESCR_FORMAT_COL_BY_COL);
|
||||
|
||||
Size win_size;
|
||||
Size block_size;
|
||||
Size block_stride;
|
||||
Size cell_size;
|
||||
int nbins;
|
||||
double win_sigma;
|
||||
double threshold_L2hys;
|
||||
bool gamma_correction;
|
||||
int nlevels;
|
||||
|
||||
protected:
|
||||
void computeBlockHistograms(const GpuMat& img);
|
||||
void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);
|
||||
|
||||
double getWinSigma() const;
|
||||
bool checkDetectorSize() const;
|
||||
|
||||
static int numPartsWithin(int size, int part_size, int stride);
|
||||
static Size numPartsWithin(Size size, Size part_size, Size stride);
|
||||
|
||||
// Coefficients of the separating plane
|
||||
float free_coef;
|
||||
GpuMat detector;
|
||||
|
||||
// Results of the last classification step
|
||||
GpuMat labels, labels_buf;
|
||||
Mat labels_host;
|
||||
|
||||
// Results of the last histogram evaluation step
|
||||
GpuMat block_hists, block_hists_buf;
|
||||
|
||||
// Gradients conputation results
|
||||
GpuMat grad, qangle, grad_buf, qangle_buf;
|
||||
|
||||
// returns subbuffer with required size, reallocates buffer if nessesary.
|
||||
static GpuMat getBuffer(const Size& sz, int type, GpuMat& buf);
|
||||
static GpuMat getBuffer(int rows, int cols, int type, GpuMat& buf);
|
||||
|
||||
std::vector<GpuMat> image_scales;
|
||||
};
|
||||
|
||||
|
||||
////////////////////////////////// BruteForceMatcher //////////////////////////////////
|
||||
@@ -213,34 +125,7 @@ public:
|
||||
};
|
||||
|
||||
////////////////////////////////// CascadeClassifier_GPU //////////////////////////////////////////
|
||||
// The cascade classifier class for object detection: supports old haar and new lbp xlm formats and nvbin for haar cascades olny.
|
||||
class CV_EXPORTS CascadeClassifier_GPU
|
||||
{
|
||||
public:
|
||||
CascadeClassifier_GPU();
|
||||
CascadeClassifier_GPU(const String& filename);
|
||||
~CascadeClassifier_GPU();
|
||||
|
||||
bool empty() const;
|
||||
bool load(const String& filename);
|
||||
void release();
|
||||
|
||||
/* returns number of detected objects */
|
||||
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size());
|
||||
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4);
|
||||
|
||||
bool findLargestObject;
|
||||
bool visualizeInPlace;
|
||||
|
||||
Size getClassifierSize() const;
|
||||
|
||||
private:
|
||||
struct CascadeClassifierImpl;
|
||||
CascadeClassifierImpl* impl;
|
||||
struct HaarCascade;
|
||||
struct LbpCascade;
|
||||
friend class CascadeClassifier_GPU_LBP;
|
||||
};
|
||||
|
||||
////////////////////////////////// FAST //////////////////////////////////////////
|
||||
|
||||
|
Reference in New Issue
Block a user