parse soft cascade from xml

This commit is contained in:
marina.kolpakova 2012-09-04 18:03:10 +04:00
parent fe2c38be80
commit a54d456ad0
3 changed files with 222 additions and 137 deletions

View File

@ -517,17 +517,6 @@ protected:
};
private:
struct Feature
{
cv::Rect rect;
int channel;
};
struct Stamp
{
};
struct Filds;
Filds* filds;
};

View File

@ -45,35 +45,94 @@
#include <vector>
#include <string>
#include <stdio.h>
namespace {
static const char* SC_OCT_SCALE = "scale";
static const char* SC_OCT_STAGES = "stageNum";
struct Octave
{
float scale;
int stages;
Octave(){}
Octave(const cv::FileNode& fn) : scale((float)fn[SC_OCT_SCALE]), stages((int)fn[SC_OCT_STAGES])
{printf("octave: %f %d\n", scale, stages);}
};
static const char *SC_STAGE_THRESHOLD = "stageThreshold";
static const char *SC_STAGE_WEIGHT = "weight";
struct Stage
{
float threshold;
float weight;
Stage(){}
Stage(const cv::FileNode& fn) : threshold((float)fn[SC_STAGE_THRESHOLD]), weight((float)fn[SC_STAGE_WEIGHT])
{printf(" stage: %f %f\n",threshold, weight);}
};
static const char *SC_F_THRESHOLD = "threshold";
static const char *SC_F_DIRECTION = "direction";
static const char *SC_F_CHANNEL = "chennel";
static const char *SC_F_RECT = "rect";
struct Feature
{
float threshold;
int direction;
int chennel;
cv::Rect rect;
Feature() {}
Feature(const cv::FileNode& fn)
: threshold((float)fn[SC_F_THRESHOLD]), direction((int)fn[SC_F_DIRECTION]),
chennel((int)fn[SC_F_CHANNEL])
{
cv::FileNode rn = fn[SC_F_RECT];
cv::FileNodeIterator r_it = rn.begin();
rect = cv::Rect(*(r_it++), *(r_it++), *(r_it++), *(r_it++));
printf(" feature: %f %d %d [%d %d %d %d]\n",threshold, direction, chennel, rect.x, rect.y, rect.width, rect.height);}
};
}
struct cv::SoftCascade::Filds
{
std::vector<float> octaves;
// cv::Mat luv;
// std::vector<cv::Mat> bins;
// cv::Mat magnitude;
// double scaleFactor;
// int windowStep;
float minScale;
float maxScale;
int origObjWidth;
int origObjHeight;
int noctaves;
std::vector<Octave> octaves;
std::vector<Stage> stages;
std::vector<Feature> features;
bool fill(const FileNode &root, const float mins, const float maxs)
{
minScale = mins;
maxScale = maxs;
// cascade properties
const char *SC_STAGE_TYPE = "stageType";
const char *SC_FEATURE_TYPE = "featureType";
const char *SC_BOOST = "BOOST";
const char *SC_FEATURE_TYPE = "featureType";
const char *SC_ICF = "ICF";
const char *SC_TREE_TYPE = "stageTreeType";
const char *SC_STAGE_TH2 = "TH2";
const char *SC_NUM_OCTAVES = "octavesNum";
const char* SC_CASCADES = "cascades";
const char *SC_HEIGHT = "height";
const char *SC_WIDTH = "width";
const char *SC_MAX_DEPTH = "maxDepth";
const char *SC_ORIG_W = "origObjWidth";
const char *SC_ORIG_H = "origObjHeight";
const char* SC_OCTAVES = "octaves";
const char *SC_STAGES = "stages";
const char *SC_STAGE_THRESHOLD = "stageThreshold";
const char *SC_FEATURES = "features";
// only boost supported
std::string stageTypeStr = (string)root[SC_STAGE_TYPE];
@ -83,123 +142,157 @@ struct cv::SoftCascade::Filds
string featureTypeStr = (string)root[SC_FEATURE_TYPE];
CV_Assert(featureTypeStr == SC_ICF);
// only trees of height 2
string stageTreeTypeStr = (string)root[SC_TREE_TYPE];
CV_Assert(stageTreeTypeStr == SC_STAGE_TH2);
// not empty
noctaves = (int)root[SC_NUM_OCTAVES];
CV_Assert(noctaves > 0);
// const char *SC_WEAK_CLASSIFIERS = "weakClassifiers";
// const char *SC_INTERNAL_NODES = "internalNodes";
// const char *SC_LEAF_VALUES = "leafValues";
// const char *SC_FEATURES = "features";
// const char *SC_RECT = "rect";
origObjWidth = (int)root[SC_ORIG_W];
CV_Assert(origObjWidth == SoftCascade::ORIG_OBJECT_WIDTH);
// const char *SC_STAGE_PARAMS = "stageParams";
// const char *SC_FEATURE_PARAMS = "featureParams";
// const char *SC_MAX_CAT_COUNT = "maxCatCount";
origObjHeight = (int)root[SC_ORIG_H];
CV_Assert(origObjHeight == SoftCascade::ORIG_OBJECT_HEIGHT);
// for each octave (~ one cascade in classic OpenCV xml)
FileNode fn = root[SC_OCTAVES];
if (fn.empty()) return false;
octaves.reserve(noctaves);
FileNodeIterator it = fn.begin(), it_end = fn.end();
for (; it != it_end; ++it)
{
FileNode fns = *it;
Octave octave = Octave(fns);
CV_Assert(octave.stages > 0);
octaves.push_back(octave);
stages.reserve(stages.size() + octave.stages);
fns = fns[SC_STAGES];
if (fn.empty()) return false;
// for each stage (~ decision tree with H = 2)
FileNodeIterator st = fns.begin(), st_end = fns.end();
for (; st != st_end; ++st )
{
fns = *st;
stages.push_back(Stage(fns));
fns = fns[SC_FEATURES];
// for each feature for tree. features stored in order {root, left, right}
FileNodeIterator ftr = fns.begin(), ft_end = fns.end();
for (; ftr != ft_end; ++ftr)
{
features.push_back(Feature(*ftr));
}
}
}
return true;
}
};
namespace {
// namespace {
struct Cascade {
int logOctave;
float octave;
cv::Size objSize;
};
// struct Cascade {
// int logOctave;
// float octave;
// cv::Size objSize;
// };
struct Level {
int index;
float factor;
float logFactor;
int width;
int height;
float octave;
cv::Size objSize;
// struct Level {
// int index;
// float factor;
// float logFactor;
// int width;
// int height;
// float octave;
// cv::Size objSize;
Level(int i,float f, float lf, int w, int h) : index(i), factor(f), logFactor(lf), width(w), height(h), octave(0.f) {}
// Level(int i,float f, float lf, int w, int h) : index(i), factor(f), logFactor(lf), width(w), height(h), octave(0.f) {}
void assign(float o, int detW, int detH)
{
octave = o;
objSize = cv::Size(cv::saturate_cast<int>(detW * o), cv::saturate_cast<int>(detH * o));
}
// void assign(float o, int detW, int detH)
// {
// octave = o;
// objSize = cv::Size(cv::saturate_cast<int>(detW * o), cv::saturate_cast<int>(detH * o));
// }
float relScale() {return (factor / octave); }
};
// compute levels of full pyramid
void pyrLevels(int frameW, int frameH, int detW, int detH, int scales, float minScale, float maxScale, std::vector<Level> levels)
{
CV_Assert(scales > 1);
levels.clear();
float logFactor = (log(maxScale) - log(minScale)) / (scales -1);
// float relScale() {return (factor / octave); }
// };
// // compute levels of full pyramid
// void pyrLevels(int frameW, int frameH, int detW, int detH, int scales, float minScale, float maxScale, std::vector<Level> levels)
// {
// CV_Assert(scales > 1);
// levels.clear();
// float logFactor = (log(maxScale) - log(minScale)) / (scales -1);
float scale = minScale;
for (int sc = 0; sc < scales; ++sc)
{
Level level(sc, scale, log(scale) + logFactor, std::max(0.0f, frameW - (detW * scale)), std::max(0.0f, frameH - (detH * scale)));
if (!level.width || !level.height)
break;
else
levels.push_back(level);
// float scale = minScale;
// for (int sc = 0; sc < scales; ++sc)
// {
// Level level(sc, scale, log(scale) + logFactor, std::max(0.0f, frameW - (detW * scale)), std::max(0.0f, frameH - (detH * scale)));
// if (!level.width || !level.height)
// break;
// else
// levels.push_back(level);
if (fabs(scale - maxScale) < FLT_EPSILON) break;
scale = std::min(maxScale, expf(log(scale) + logFactor));
}
// if (fabs(scale - maxScale) < FLT_EPSILON) break;
// scale = std::min(maxScale, expf(log(scale) + logFactor));
// }
}
// }
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
struct CascadeIntrinsics {
static const float lambda = 1.099f, a = 0.89f;
static const float intrinsics[10][4];
// // according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
// struct CascadeIntrinsics {
// static const float lambda = 1.099f, a = 0.89f;
// static const float intrinsics[10][4];
static float getFor(int chennel, float scaling)
{
CV_Assert(chennel < 10);
// static float getFor(int chennel, float scaling)
// {
// CV_Assert(chennel < 10);
if ((scaling - 1.f) < FLT_EPSILON)
return 1.f;
// if ((scaling - 1.f) < FLT_EPSILON)
// return 1.f;
int ud = (int)(scaling < 1.f);
return intrinsics[chennel][(ud << 1)] * pow(scaling, intrinsics[chennel][(ud << 1) + 1]);
}
// int ud = (int)(scaling < 1.f);
// return intrinsics[chennel][(ud << 1)] * pow(scaling, intrinsics[chennel][(ud << 1) + 1]);
// }
};
// };
const float CascadeIntrinsics::intrinsics[10][4] =
{ //da, db, ua, ub
// hog-like orientation bins
{a, lambda / log(2), 1, 2},
{a, lambda / log(2), 1, 2},
{a, lambda / log(2), 1, 2},
{a, lambda / log(2), 1, 2},
{a, lambda / log(2), 1, 2},
{a, lambda / log(2), 1, 2},
// gradient magnitude
{a, lambda / log(2), 1, 2},
// luv -color chennels
{1, 2, 1, 2},
{1, 2, 1, 2},
{1, 2, 1, 2}
};
// const float CascadeIntrinsics::intrinsics[10][4] =
// { //da, db, ua, ub
// // hog-like orientation bins
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// // gradient magnitude
// {a, lambda / log(2), 1, 2},
// // luv -color chennels
// {1, 2, 1, 2},
// {1, 2, 1, 2},
// {1, 2, 1, 2}
// };
struct Feature
{
cv::Rect rect;
int channel;
float threshold;
// struct Feature
// {
// cv::Rect rect;
// int channel;
// float threshold;
Feature(int x, int y, int w, int h, int c, float t) : rect(cv::Rect(x, y, w, h)), channel(c), threshold(t) {}
Feature(cv::Rect r, int c, float t) : rect(r), channel(c), threshold(t) {}
// Feature(int x, int y, int w, int h, int c, float t) : rect(cv::Rect(x, y, w, h)), channel(c), threshold(t) {}
// Feature(cv::Rect r, int c, float t) : rect(r), channel(c), threshold(t) {}
Feature rescale(float relScale)
{
cv::Rect r(cvRound(rect.x * relScale), cvRound(rect.y * relScale), cvRound(rect.width * relScale), cvRound(rect.height * relScale));
return Feature( r, channel, threshold * CascadeIntrinsics::getFor(channel, relScale));
}
};
}
// Feature rescale(float relScale)
// {
// cv::Rect r(cvRound(rect.x * relScale), cvRound(rect.y * relScale), cvRound(rect.width * relScale), cvRound(rect.height * relScale));
// return Feature( r, channel, threshold * CascadeIntrinsics::getFor(channel, relScale));
// }
// };
// }
@ -227,33 +320,33 @@ bool cv::SoftCascade::load( const string& filename, const float minScale, const
filds = new Filds;
if (!(*filds).fill(fs.getFirstTopLevelNode(), minScale, maxScale)) return false;
////////////////
// temp fixture
Filds& flds = *filds;
flds.octaves.push_back(0.5f);
flds.octaves.push_back(1.0f);
flds.octaves.push_back(2.0f);
flds.octaves.push_back(4.0f);
flds.octaves.push_back(8.0f);
// ////////////////
// // temp fixture
// Filds& flds = *filds;
// flds.octaves.push_back(0.5f);
// flds.octaves.push_back(1.0f);
// flds.octaves.push_back(2.0f);
// flds.octaves.push_back(4.0f);
// flds.octaves.push_back(8.0f);
// scales calculations
std::vector<Level> levels;
// // scales calculations
// std::vector<Level> levels;
pyrLevels(FRAME_WIDTH, FRAME_HEIGHT, ORIG_OBJECT_WIDTH, ORIG_OBJECT_HEIGHT, TOTAL_SCALES, minScale, maxScale, levels);
// pyrLevels(FRAME_WIDTH, FRAME_HEIGHT, ORIG_OBJECT_WIDTH, ORIG_OBJECT_HEIGHT, TOTAL_SCALES, minScale, maxScale, levels);
for (std::vector<Level>::iterator level = levels.begin(); level < levels.end(); ++level)
{
float minAbsLog = FLT_MAX;
for (std::vector<float>::iterator oct = flds.octaves.begin(); oct < flds.octaves.end(); ++oct)
{
float logOctave = log(*oct);
float logAbsScale = fabs((*level).logFactor - logOctave);
// for (std::vector<Level>::iterator level = levels.begin(); level < levels.end(); ++level)
// {
// float minAbsLog = FLT_MAX;
// for (std::vector<float>::iterator oct = flds.octaves.begin(); oct < flds.octaves.end(); ++oct)
// {
// float logOctave = log(*oct);
// float logAbsScale = fabs((*level).logFactor - logOctave);
if(logAbsScale < minAbsLog)
(*level).assign(*oct, ORIG_OBJECT_WIDTH, ORIG_OBJECT_HEIGHT);
// if(logAbsScale < minAbsLog)
// (*level).assign(*oct, ORIG_OBJECT_WIDTH, ORIG_OBJECT_HEIGHT);
}
}
// }
// }
// load cascade from xml
// read(const FileNode &root)

View File

@ -41,7 +41,10 @@
#include "test_precomp.hpp"
TEST(SoftCascade, HOG)
TEST(SoftCascade, readCascade)
{
std::string xml = "/home/kellan/icf-template.xml";
cv::SoftCascade cascade;
ASSERT_TRUE(cascade.load(xml));
}