diff --git a/modules/gpu/src/cascadeclassifier.cpp b/modules/gpu/src/cascadeclassifier.cpp index f3b388422..2057f1aee 100644 --- a/modules/gpu/src/cascadeclassifier.cpp +++ b/modules/gpu/src/cascadeclassifier.cpp @@ -273,21 +273,22 @@ namespace cv { namespace gpu { namespace device { namespace lbp { - int classifyStump(const DevMem2Db mstages, - const int nstages, - const DevMem2Di mnodes, - const DevMem2Df mleaves, - const DevMem2Di msubsets, - const DevMem2Db mfeatures, - const DevMem2Di integral, - const int workWidth, - const int workHeight, - const int clWidth, - const int clHeight, - float scale, - int step, - int subsetSize, - DevMem2D_ objects); + classifyStump(const DevMem2Db mstages, + const int nstages, + const DevMem2Di mnodes, + const DevMem2Df mleaves, + const DevMem2Di msubsets, + const DevMem2Db mfeatures, + const DevMem2Di integral, + const int workWidth, + const int workHeight, + const int clWidth, + const int clHeight, + float scale, + int step, + int subsetSize, + DevMem2D_ objects, + unsigned int* classified); } }}} @@ -308,6 +309,11 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp maxObjectSize = image.size(); scaledImageBuffer.create(image.rows + 1, image.cols + 1, CV_8U); + unsigned int* classified = new unsigned int[1]; + *classified = 0; + unsigned int* dclassified; + cudaMalloc(&dclassified, sizeof(int)); + cudaMemcpy(dclassified, classified, sizeof(int), cudaMemcpyHostToDevice); for( double factor = 1; ; factor *= scaleFactor ) { @@ -331,10 +337,11 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp int step = (factor <= 2.) + 1; - int res = cv::gpu::device::lbp::classifyStump(stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat, leaves_mat, subsets_mat, features_mat, - integral, processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, scaleFactor, step, subsetSize, objects); - std::cout << res << "Results: " << cv::Mat(objects).row(0).colRange(0, res) << std::endl; + cv::gpu::device::lbp::classifyStump(stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat, leaves_mat, subsets_mat, features_mat, + integral, processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, scaleFactor, step, subsetSize, objects, dclassified); } + cudaMemcpy(classified, dclassified, sizeof(int), cudaMemcpyDeviceToHost); + std::cout << *classified << "Results: " << cv::Mat(objects).row(0).colRange(0, *classified) << std::endl; // TODO: reject levels return 0; diff --git a/modules/gpu/src/cuda/lbp.cu b/modules/gpu/src/cuda/lbp.cu index b9979474f..b07ecad0a 100644 --- a/modules/gpu/src/cuda/lbp.cu +++ b/modules/gpu/src/cuda/lbp.cu @@ -51,8 +51,6 @@ namespace cv { namespace gpu { namespace device { int y = threadIdx.x * scale; int x = blockIdx.x * scale; - *n = 0; - int i = 0; int current_node = 0; int current_leave = 0; @@ -77,7 +75,6 @@ namespace cv { namespace gpu { namespace device current_leave += 2; } - i = s; if (sum < stage.threshold) return; } @@ -88,29 +85,26 @@ namespace cv { namespace gpu { namespace device rect.z = roundf(clWidth); rect.w = roundf(clHeight); - int res = atomicInc(n, 1000); + int res = atomicInc(n, 100); objects(0, res) = rect; } - int classifyStump(const DevMem2Db mstages, const int nstages, const DevMem2Di mnodes, const DevMem2Df mleaves, const DevMem2Di msubsets, const DevMem2Db mfeatures, + classifyStump(const DevMem2Db mstages, const int nstages, const DevMem2Di mnodes, const DevMem2Df mleaves, const DevMem2Di msubsets, const DevMem2Db mfeatures, const DevMem2Di integral, const int workWidth, const int workHeight, const int clWidth, const int clHeight, float scale, int step, int subsetSize, - DevMem2D_ objects) + DevMem2D_ objects, unsigned int* classified) { int blocks = ceilf(workHeight / (float)step); int threads = ceilf(workWidth / (float)step); - printf("blocks %d, threads %d\n", blocks, threads); + // printf("blocks %d, threads %d\n", blocks, threads); Stage* stages = (Stage*)(mstages.ptr()); ClNode* nodes = (ClNode*)(mnodes.ptr()); const float* leaves = mleaves.ptr(); const int* subsets = msubsets.ptr(); const uchar4* features = (uchar4*)(mfeatures.ptr()); - unsigned int * n, *h_n = new unsigned int[1]; - cudaMalloc(&n, sizeof(int)); + lbp_classify_stump<<>>(stages, nstages, nodes, leaves, subsets, features, integral, - workWidth, workHeight, clWidth, clHeight, scale, step, subsetSize, objects, n); - cudaMemcpy(h_n, n, sizeof(int), cudaMemcpyDeviceToHost); - return *h_n; + workWidth, workHeight, clWidth, clHeight, scale, step, subsetSize, objects, classified); } } }}} \ No newline at end of file