merged gpu_perf_cpu into gpu_perf

This commit is contained in:
Vladislav Vinogradov 2012-08-17 17:34:58 +04:00
parent 93172bab87
commit a507d564a4
23 changed files with 3270 additions and 5177 deletions

View File

@ -15,13 +15,19 @@ PERF_TEST_P(ImagePair, Calib3D_StereoBM, Values(make_pair<string, string>("gpu/p
{
declare.time(5.0);
cv::Mat imgLeft = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
const cv::Mat imgLeft = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgLeft.empty());
cv::Mat imgRight = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
const cv::Mat imgRight = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgRight.empty());
cv::gpu::StereoBM_GPU d_bm(0, 256);
const int preset = 0;
const int ndisp = 256;
if (runOnGpu)
{
cv::gpu::StereoBM_GPU d_bm(preset, ndisp);
cv::gpu::GpuMat d_imgLeft(imgLeft);
cv::gpu::GpuMat d_imgRight(imgRight);
cv::gpu::GpuMat d_dst;
@ -32,6 +38,20 @@ PERF_TEST_P(ImagePair, Calib3D_StereoBM, Values(make_pair<string, string>("gpu/p
{
d_bm(d_imgLeft, d_imgRight, d_dst);
}
}
else
{
cv::StereoBM bm(preset, ndisp);
cv::Mat dst;
bm(imgLeft, imgRight, dst);
TEST_CYCLE()
{
bm(imgLeft, imgRight, dst);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -41,13 +61,18 @@ PERF_TEST_P(ImagePair, Calib3D_StereoBeliefPropagation, Values(make_pair<string,
{
declare.time(10.0);
cv::Mat imgLeft = readImage(GetParam().first);
const cv::Mat imgLeft = readImage(GetParam().first);
ASSERT_FALSE(imgLeft.empty());
cv::Mat imgRight = readImage(GetParam().second);
const cv::Mat imgRight = readImage(GetParam().second);
ASSERT_FALSE(imgRight.empty());
cv::gpu::StereoBeliefPropagation d_bp(64);
const int ndisp = 64;
if (runOnGpu)
{
cv::gpu::StereoBeliefPropagation d_bp(ndisp);
cv::gpu::GpuMat d_imgLeft(imgLeft);
cv::gpu::GpuMat d_imgRight(imgRight);
cv::gpu::GpuMat d_dst;
@ -58,6 +83,11 @@ PERF_TEST_P(ImagePair, Calib3D_StereoBeliefPropagation, Values(make_pair<string,
{
d_bp(d_imgLeft, d_imgRight, d_dst);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -67,13 +97,18 @@ PERF_TEST_P(ImagePair, Calib3D_StereoConstantSpaceBP, Values(make_pair<string, s
{
declare.time(10.0);
cv::Mat imgLeft = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
const cv::Mat imgLeft = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgLeft.empty());
cv::Mat imgRight = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
const cv::Mat imgRight = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgRight.empty());
cv::gpu::StereoConstantSpaceBP d_csbp(128);
const int ndisp = 128;
if (runOnGpu)
{
cv::gpu::StereoConstantSpaceBP d_csbp(ndisp);
cv::gpu::GpuMat d_imgLeft(imgLeft);
cv::gpu::GpuMat d_imgRight(imgRight);
cv::gpu::GpuMat d_dst;
@ -84,6 +119,11 @@ PERF_TEST_P(ImagePair, Calib3D_StereoConstantSpaceBP, Values(make_pair<string, s
{
d_csbp(d_imgLeft, d_imgRight, d_dst);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -91,13 +131,18 @@ PERF_TEST_P(ImagePair, Calib3D_StereoConstantSpaceBP, Values(make_pair<string, s
PERF_TEST_P(ImagePair, Calib3D_DisparityBilateralFilter, Values(make_pair<string, string>("gpu/stereobm/aloe-L.png", "gpu/stereobm/aloe-disp.png")))
{
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
const cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
cv::Mat disp = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
const cv::Mat disp = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(disp.empty());
cv::gpu::DisparityBilateralFilter d_filter(128);
const int ndisp = 128;
if (runOnGpu)
{
cv::gpu::DisparityBilateralFilter d_filter(ndisp);
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_disp(disp);
cv::gpu::GpuMat d_dst;
@ -108,6 +153,11 @@ PERF_TEST_P(ImagePair, Calib3D_DisparityBilateralFilter, Values(make_pair<string
{
d_filter(d_disp, d_img, d_dst);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -117,14 +167,16 @@ DEF_PARAM_TEST_1(Count, int);
PERF_TEST_P(Count, Calib3D_TransformPoints, Values(5000, 10000, 20000))
{
int count = GetParam();
const int count = GetParam();
cv::Mat src(1, count, CV_32FC3);
fillRandom(src, -100, 100);
cv::Mat rvec = cv::Mat::ones(1, 3, CV_32FC1);
cv::Mat tvec = cv::Mat::ones(1, 3, CV_32FC1);
const cv::Mat rvec = cv::Mat::ones(1, 3, CV_32FC1);
const cv::Mat tvec = cv::Mat::ones(1, 3, CV_32FC1);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -134,6 +186,11 @@ PERF_TEST_P(Count, Calib3D_TransformPoints, Values(5000, 10000, 20000))
{
cv::gpu::transformPoints(d_src, rvec, tvec, d_dst);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -141,15 +198,17 @@ PERF_TEST_P(Count, Calib3D_TransformPoints, Values(5000, 10000, 20000))
PERF_TEST_P(Count, Calib3D_ProjectPoints, Values(5000, 10000, 20000))
{
int count = GetParam();
const int count = GetParam();
cv::Mat src(1, count, CV_32FC3);
fillRandom(src, -100, 100);
cv::Mat rvec = cv::Mat::ones(1, 3, CV_32FC1);
cv::Mat tvec = cv::Mat::ones(1, 3, CV_32FC1);
cv::Mat camera_mat = cv::Mat::ones(3, 3, CV_32FC1);
const cv::Mat rvec = cv::Mat::ones(1, 3, CV_32FC1);
const cv::Mat tvec = cv::Mat::ones(1, 3, CV_32FC1);
const cv::Mat camera_mat = cv::Mat::ones(3, 3, CV_32FC1);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -159,6 +218,18 @@ PERF_TEST_P(Count, Calib3D_ProjectPoints, Values(5000, 10000, 20000))
{
cv::gpu::projectPoints(d_src, rvec, tvec, camera_mat, cv::Mat(), d_dst);
}
}
else
{
cv::Mat dst;
cv::projectPoints(src, rvec, tvec, camera_mat, cv::noArray(), dst);
TEST_CYCLE()
{
cv::projectPoints(src, rvec, tvec, camera_mat, cv::noArray(), dst);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -166,9 +237,9 @@ PERF_TEST_P(Count, Calib3D_ProjectPoints, Values(5000, 10000, 20000))
PERF_TEST_P(Count, Calib3D_SolvePnPRansac, Values(5000, 10000, 20000))
{
declare.time(3.0);
declare.time(10.0);
int count = GetParam();
const int count = GetParam();
cv::Mat object(1, count, CV_32FC3);
fillRandom(object, -100, 100);
@ -180,7 +251,7 @@ PERF_TEST_P(Count, Calib3D_SolvePnPRansac, Values(5000, 10000, 20000))
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
cv::Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0));
const cv::Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0));
std::vector<cv::Point2f> image_vec;
cv::Mat rvec_gold(1, 3, CV_32FC1);
@ -194,12 +265,24 @@ PERF_TEST_P(Count, Calib3D_SolvePnPRansac, Values(5000, 10000, 20000))
cv::Mat rvec;
cv::Mat tvec;
if (runOnGpu)
{
cv::gpu::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
TEST_CYCLE()
{
cv::gpu::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
}
}
else
{
cv::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
TEST_CYCLE()
{
cv::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -207,8 +290,8 @@ PERF_TEST_P(Count, Calib3D_SolvePnPRansac, Values(5000, 10000, 20000))
PERF_TEST_P(Sz_Depth, Calib3D_ReprojectImageTo3D, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16S)))
{
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
const cv::Size size = GET_PARAM(0);
const int depth = GET_PARAM(1);
cv::Mat src(size, depth);
fillRandom(src, 5.0, 30.0);
@ -216,6 +299,8 @@ PERF_TEST_P(Sz_Depth, Calib3D_ReprojectImageTo3D, Combine(GPU_TYPICAL_MAT_SIZES,
cv::Mat Q(4, 4, CV_32FC1);
fillRandom(Q, 0.1, 1.0);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -225,6 +310,18 @@ PERF_TEST_P(Sz_Depth, Calib3D_ReprojectImageTo3D, Combine(GPU_TYPICAL_MAT_SIZES,
{
cv::gpu::reprojectImageTo3D(d_src, d_dst, Q);
}
}
else
{
cv::Mat dst;
cv::reprojectImageTo3D(src, dst, Q);
TEST_CYCLE()
{
cv::reprojectImageTo3D(src, dst, Q);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -232,12 +329,14 @@ PERF_TEST_P(Sz_Depth, Calib3D_ReprojectImageTo3D, Combine(GPU_TYPICAL_MAT_SIZES,
PERF_TEST_P(Sz_Depth, Calib3D_DrawColorDisp, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16S)))
{
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
const cv::Size size = GET_PARAM(0);
const int type = GET_PARAM(1);
cv::Mat src(size, type);
fillRandom(src, 0, 255);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -247,6 +346,11 @@ PERF_TEST_P(Sz_Depth, Calib3D_DrawColorDisp, Combine(GPU_TYPICAL_MAT_SIZES, Valu
{
cv::gpu::drawColorDisp(d_src, d_dst, 255);
}
}
else
{
FAIL();
}
}
} // namespace

File diff suppressed because it is too large Load Diff

View File

@ -12,11 +12,13 @@ DEF_PARAM_TEST_1(Image, string);
PERF_TEST_P(Image, Features2D_SURF, Values<string>("gpu/perf/aloe.jpg"))
{
declare.time(2.0);
declare.time(50.0);
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (runOnGpu)
{
cv::gpu::SURF_GPU d_surf;
cv::gpu::GpuMat d_img(img);
@ -28,6 +30,22 @@ PERF_TEST_P(Image, Features2D_SURF, Values<string>("gpu/perf/aloe.jpg"))
{
d_surf(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
}
}
else
{
cv::SURF surf;
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
surf(img, cv::noArray(), keypoints, descriptors);
TEST_CYCLE()
{
keypoints.clear();
surf(img, cv::noArray(), keypoints, descriptors);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -38,6 +56,8 @@ PERF_TEST_P(Image, Features2D_FAST, Values<string>("gpu/perf/aloe.jpg"))
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (runOnGpu)
{
cv::gpu::FAST_GPU d_fast(20);
cv::gpu::GpuMat d_img(img);
@ -49,6 +69,19 @@ PERF_TEST_P(Image, Features2D_FAST, Values<string>("gpu/perf/aloe.jpg"))
{
d_fast(d_img, cv::gpu::GpuMat(), d_keypoints);
}
}
else
{
std::vector<cv::KeyPoint> keypoints;
cv::FAST(img, keypoints, 20);
TEST_CYCLE()
{
keypoints.clear();
cv::FAST(img, keypoints, 20);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -59,6 +92,8 @@ PERF_TEST_P(Image, Features2D_ORB, Values<string>("gpu/perf/aloe.jpg"))
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (runOnGpu)
{
cv::gpu::ORB_GPU d_orb(4000);
cv::gpu::GpuMat d_img(img);
@ -70,6 +105,22 @@ PERF_TEST_P(Image, Features2D_ORB, Values<string>("gpu/perf/aloe.jpg"))
{
d_orb(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
}
}
else
{
cv::ORB orb(4000);
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
orb(img, cv::noArray(), keypoints, descriptors);
TEST_CYCLE()
{
keypoints.clear();
orb(img, cv::noArray(), keypoints, descriptors);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -79,7 +130,7 @@ DEF_PARAM_TEST(DescSize_Norm, int, NormType);
PERF_TEST_P(DescSize_Norm, Features2D_BFMatch, Combine(Values(64, 128, 256), Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
{
declare.time(3.0);
declare.time(20.0);
int desc_size = GET_PARAM(0);
int normType = GET_PARAM(1);
@ -92,6 +143,8 @@ PERF_TEST_P(DescSize_Norm, Features2D_BFMatch, Combine(Values(64, 128, 256), Val
cv::Mat train(3000, desc_size, type);
fillRandom(train);
if (runOnGpu)
{
cv::gpu::BFMatcher_GPU d_matcher(normType);
cv::gpu::GpuMat d_query(query);
@ -104,6 +157,20 @@ PERF_TEST_P(DescSize_Norm, Features2D_BFMatch, Combine(Values(64, 128, 256), Val
{
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
}
}
else
{
cv::BFMatcher matcher(normType);
std::vector<cv::DMatch> matches;
matcher.match(query, train, matches);
TEST_CYCLE()
{
matcher.match(query, train, matches);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -116,7 +183,7 @@ PERF_TEST_P(DescSize_K_Norm, Features2D_BFKnnMatch, Combine(
Values(2, 3),
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
{
declare.time(3.0);
declare.time(30.0);
int desc_size = GET_PARAM(0);
int k = GET_PARAM(1);
@ -130,6 +197,8 @@ PERF_TEST_P(DescSize_K_Norm, Features2D_BFKnnMatch, Combine(
cv::Mat train(3000, desc_size, type);
fillRandom(train);
if (runOnGpu)
{
cv::gpu::BFMatcher_GPU d_matcher(normType);
cv::gpu::GpuMat d_query(query);
@ -142,6 +211,20 @@ PERF_TEST_P(DescSize_K_Norm, Features2D_BFKnnMatch, Combine(
{
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, k);
}
}
else
{
cv::BFMatcher matcher(normType);
std::vector< std::vector<cv::DMatch> > matches;
matcher.knnMatch(query, train, matches, k);
TEST_CYCLE()
{
matcher.knnMatch(query, train, matches, k);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -149,7 +232,7 @@ PERF_TEST_P(DescSize_K_Norm, Features2D_BFKnnMatch, Combine(
PERF_TEST_P(DescSize_Norm, Features2D_BFRadiusMatch, Combine(Values(64, 128, 256), Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
{
declare.time(3.0);
declare.time(30.0);
int desc_size = GET_PARAM(0);
int normType = GET_PARAM(1);
@ -162,6 +245,8 @@ PERF_TEST_P(DescSize_Norm, Features2D_BFRadiusMatch, Combine(Values(64, 128, 256
cv::Mat train(3000, desc_size, type);
fillRandom(train, 0.0, 1.0);
if (runOnGpu)
{
cv::gpu::BFMatcher_GPU d_matcher(normType);
cv::gpu::GpuMat d_query(query);
@ -174,6 +259,20 @@ PERF_TEST_P(DescSize_Norm, Features2D_BFRadiusMatch, Combine(Values(64, 128, 256
{
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, 2.0);
}
}
else
{
cv::BFMatcher matcher(normType);
std::vector< std::vector<cv::DMatch> > matches;
matcher.radiusMatch(query, train, matches, 2.0);
TEST_CYCLE()
{
matcher.radiusMatch(query, train, matches, 2.0);
}
}
}
} // namespace

View File

@ -12,6 +12,8 @@ DEF_PARAM_TEST(Sz_Type_KernelSz, cv::Size, MatType, int);
PERF_TEST_P(Sz_Type_KernelSz, Filters_Blur, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4), Values(3, 5, 7)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
@ -19,6 +21,8 @@ PERF_TEST_P(Sz_Type_KernelSz, Filters_Blur, Combine(GPU_TYPICAL_MAT_SIZES, Value
cv::Mat src(size, type);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -28,6 +32,18 @@ PERF_TEST_P(Sz_Type_KernelSz, Filters_Blur, Combine(GPU_TYPICAL_MAT_SIZES, Value
{
cv::gpu::blur(d_src, d_dst, cv::Size(ksize, ksize));
}
}
else
{
cv::Mat dst;
cv::blur(src, dst, cv::Size(ksize, ksize));
TEST_CYCLE()
{
cv::blur(src, dst, cv::Size(ksize, ksize));
}
}
}
//////////////////////////////////////////////////////////////////////
@ -35,6 +51,8 @@ PERF_TEST_P(Sz_Type_KernelSz, Filters_Blur, Combine(GPU_TYPICAL_MAT_SIZES, Value
PERF_TEST_P(Sz_Type_KernelSz, Filters_Sobel, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1), Values(3, 5, 7, 9, 11, 13, 15)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
@ -42,6 +60,8 @@ PERF_TEST_P(Sz_Type_KernelSz, Filters_Sobel, Combine(GPU_TYPICAL_MAT_SIZES, Valu
cv::Mat src(size, type);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
@ -52,6 +72,18 @@ PERF_TEST_P(Sz_Type_KernelSz, Filters_Sobel, Combine(GPU_TYPICAL_MAT_SIZES, Valu
{
cv::gpu::Sobel(d_src, d_dst, -1, 1, 1, d_buf, ksize);
}
}
else
{
cv::Mat dst;
cv::Sobel(src, dst, -1, 1, 1, ksize);
TEST_CYCLE()
{
cv::Sobel(src, dst, -1, 1, 1, ksize);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -59,12 +91,16 @@ PERF_TEST_P(Sz_Type_KernelSz, Filters_Sobel, Combine(GPU_TYPICAL_MAT_SIZES, Valu
PERF_TEST_P(Sz_Type, Filters_Scharr, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
cv::Mat src(size, type);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
@ -75,6 +111,18 @@ PERF_TEST_P(Sz_Type, Filters_Scharr, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U
{
cv::gpu::Scharr(d_src, d_dst, -1, 1, 0, d_buf);
}
}
else
{
cv::Mat dst;
cv::Scharr(src, dst, -1, 1, 0);
TEST_CYCLE()
{
cv::Scharr(src, dst, -1, 1, 0);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -82,6 +130,8 @@ PERF_TEST_P(Sz_Type, Filters_Scharr, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U
PERF_TEST_P(Sz_Type_KernelSz, Filters_GaussianBlur, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1), Values(3, 5, 7, 9, 11, 13, 15)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
@ -89,6 +139,8 @@ PERF_TEST_P(Sz_Type_KernelSz, Filters_GaussianBlur, Combine(GPU_TYPICAL_MAT_SIZE
cv::Mat src(size, type);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
@ -99,6 +151,18 @@ PERF_TEST_P(Sz_Type_KernelSz, Filters_GaussianBlur, Combine(GPU_TYPICAL_MAT_SIZE
{
cv::gpu::GaussianBlur(d_src, d_dst, cv::Size(ksize, ksize), d_buf, 0.5);
}
}
else
{
cv::Mat dst;
cv::GaussianBlur(src, dst, cv::Size(ksize, ksize), 0.5);
TEST_CYCLE()
{
cv::GaussianBlur(src, dst, cv::Size(ksize, ksize), 0.5);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -106,6 +170,8 @@ PERF_TEST_P(Sz_Type_KernelSz, Filters_GaussianBlur, Combine(GPU_TYPICAL_MAT_SIZE
PERF_TEST_P(Sz_Type_KernelSz, Filters_Laplacian, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values(1, 3)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
@ -113,6 +179,8 @@ PERF_TEST_P(Sz_Type_KernelSz, Filters_Laplacian, Combine(GPU_TYPICAL_MAT_SIZES,
cv::Mat src(size, type);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -122,6 +190,18 @@ PERF_TEST_P(Sz_Type_KernelSz, Filters_Laplacian, Combine(GPU_TYPICAL_MAT_SIZES,
{
cv::gpu::Laplacian(d_src, d_dst, -1, ksize);
}
}
else
{
cv::Mat dst;
cv::Laplacian(src, dst, -1, ksize);
TEST_CYCLE()
{
cv::Laplacian(src, dst, -1, ksize);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -129,6 +209,8 @@ PERF_TEST_P(Sz_Type_KernelSz, Filters_Laplacian, Combine(GPU_TYPICAL_MAT_SIZES,
PERF_TEST_P(Sz_Type, Filters_Erode, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
@ -137,6 +219,8 @@ PERF_TEST_P(Sz_Type, Filters_Erode, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
@ -147,6 +231,18 @@ PERF_TEST_P(Sz_Type, Filters_Erode, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC
{
cv::gpu::erode(d_src, d_dst, ker, d_buf);
}
}
else
{
cv::Mat dst;
cv::erode(src, dst, ker);
TEST_CYCLE()
{
cv::erode(src, dst, ker);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -154,6 +250,8 @@ PERF_TEST_P(Sz_Type, Filters_Erode, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC
PERF_TEST_P(Sz_Type, Filters_Dilate, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
@ -162,6 +260,8 @@ PERF_TEST_P(Sz_Type, Filters_Dilate, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
@ -172,6 +272,18 @@ PERF_TEST_P(Sz_Type, Filters_Dilate, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U
{
cv::gpu::dilate(d_src, d_dst, ker, d_buf);
}
}
else
{
cv::Mat dst;
cv::dilate(src, dst, ker);
TEST_CYCLE()
{
cv::dilate(src, dst, ker);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -184,6 +296,8 @@ DEF_PARAM_TEST(Sz_Type_Op, cv::Size, MatType, MorphOp);
PERF_TEST_P(Sz_Type_Op, Filters_MorphologyEx, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4), ALL_MORPH_OPS))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int morphOp = GET_PARAM(2);
@ -193,6 +307,8 @@ PERF_TEST_P(Sz_Type_Op, Filters_MorphologyEx, Combine(GPU_TYPICAL_MAT_SIZES, Val
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf1;
@ -204,6 +320,18 @@ PERF_TEST_P(Sz_Type_Op, Filters_MorphologyEx, Combine(GPU_TYPICAL_MAT_SIZES, Val
{
cv::gpu::morphologyEx(d_src, d_dst, morphOp, ker, d_buf1, d_buf2);
}
}
else
{
cv::Mat dst;
cv::morphologyEx(src, dst, morphOp, ker);
TEST_CYCLE()
{
cv::morphologyEx(src, dst, morphOp, ker);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -211,6 +339,8 @@ PERF_TEST_P(Sz_Type_Op, Filters_MorphologyEx, Combine(GPU_TYPICAL_MAT_SIZES, Val
PERF_TEST_P(Sz_Type_KernelSz, Filters_Filter2D, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values(3, 5, 7, 9, 11, 13, 15)))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
@ -221,6 +351,8 @@ PERF_TEST_P(Sz_Type_KernelSz, Filters_Filter2D, Combine(GPU_TYPICAL_MAT_SIZES, V
cv::Mat kernel(ksize, ksize, CV_32FC1);
fillRandom(kernel, 0.0, 1.0);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -230,6 +362,18 @@ PERF_TEST_P(Sz_Type_KernelSz, Filters_Filter2D, Combine(GPU_TYPICAL_MAT_SIZES, V
{
cv::gpu::filter2D(d_src, d_dst, -1, kernel);
}
}
else
{
cv::Mat dst;
cv::filter2D(src, dst, -1, kernel);
TEST_CYCLE()
{
cv::filter2D(src, dst, -1, kernel);
}
}
}
} // namespace

View File

@ -59,7 +59,7 @@ PERF_TEST_P(Sz_Depth_Cn_Inter_Border_Mode, ImgProc_Remap, Combine(
ALL_BORDER_MODES,
ALL_REMAP_MODES))
{
declare.time(3.0);
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
@ -78,6 +78,8 @@ PERF_TEST_P(Sz_Depth_Cn_Inter_Border_Mode, ImgProc_Remap, Combine(
generateMap(xmap, ymap, remapMode);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_xmap(xmap);
cv::gpu::GpuMat d_ymap(ymap);
@ -89,6 +91,18 @@ PERF_TEST_P(Sz_Depth_Cn_Inter_Border_Mode, ImgProc_Remap, Combine(
{
cv::gpu::remap(d_src, d_dst, d_xmap, d_ymap, interpolation, borderMode);
}
}
else
{
cv::Mat dst;
cv::remap(src, dst, xmap, ymap, interpolation, borderMode);
TEST_CYCLE()
{
cv::remap(src, dst, xmap, ymap, interpolation, borderMode);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -103,7 +117,7 @@ PERF_TEST_P(Sz_Depth_Cn_Inter_Scale, ImgProc_Resize, Combine(
ALL_INTERPOLATIONS,
Values(0.5, 0.3, 2.0)))
{
declare.time(1.0);
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
@ -116,6 +130,8 @@ PERF_TEST_P(Sz_Depth_Cn_Inter_Scale, ImgProc_Resize, Combine(
cv::Mat src(size, type);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -125,6 +141,18 @@ PERF_TEST_P(Sz_Depth_Cn_Inter_Scale, ImgProc_Resize, Combine(
{
cv::gpu::resize(d_src, d_dst, cv::Size(), f, f, interpolation);
}
}
else
{
cv::Mat dst;
cv::resize(src, dst, cv::Size(), f, f, interpolation);
TEST_CYCLE()
{
cv::resize(src, dst, cv::Size(), f, f, interpolation);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -151,6 +179,8 @@ PERF_TEST_P(Sz_Depth_Cn_Scale, ImgProc_ResizeArea, Combine(
cv::Mat src(size, type);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -160,6 +190,18 @@ PERF_TEST_P(Sz_Depth_Cn_Scale, ImgProc_ResizeArea, Combine(
{
cv::gpu::resize(d_src, d_dst, cv::Size(), f, f, interpolation);
}
}
else
{
cv::Mat dst;
cv::resize(src, dst, cv::Size(), f, f, interpolation);
TEST_CYCLE()
{
cv::resize(src, dst, cv::Size(), f, f, interpolation);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -174,6 +216,8 @@ PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpAffine, Combine(
Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
ALL_BORDER_MODES))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int channels = GET_PARAM(2);
@ -190,6 +234,8 @@ PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpAffine, Combine(
{std::sin(aplha), std::cos(aplha), 0}};
cv::Mat M(2, 3, CV_64F, (void*) mat);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -199,6 +245,18 @@ PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpAffine, Combine(
{
cv::gpu::warpAffine(d_src, d_dst, M, size, interpolation, borderMode);
}
}
else
{
cv::Mat dst;
cv::warpAffine(src, dst, M, size, interpolation, borderMode);
TEST_CYCLE()
{
cv::warpAffine(src, dst, M, size, interpolation, borderMode);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -211,6 +269,8 @@ PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpPerspective, Combine(
Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
ALL_BORDER_MODES))
{
declare.time(20.0);
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int channels = GET_PARAM(2);
@ -228,6 +288,8 @@ PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpPerspective, Combine(
{0.0, 0.0, 1.0}};
cv::Mat M(3, 3, CV_64F, (void*) mat);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -237,6 +299,18 @@ PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpPerspective, Combine(
{
cv::gpu::warpPerspective(d_src, d_dst, M, size, interpolation, borderMode);
}
}
else
{
cv::Mat dst;
cv::warpPerspective(src, dst, M, size, interpolation, borderMode);
TEST_CYCLE()
{
cv::warpPerspective(src, dst, M, size, interpolation, borderMode);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -260,6 +334,8 @@ PERF_TEST_P(Sz_Depth_Cn_Border, ImgProc_CopyMakeBorder, Combine(
cv::Mat src(size, type);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -269,6 +345,18 @@ PERF_TEST_P(Sz_Depth_Cn_Border, ImgProc_CopyMakeBorder, Combine(
{
cv::gpu::copyMakeBorder(d_src, d_dst, 5, 5, 5, 5, borderMode);
}
}
else
{
cv::Mat dst;
cv::copyMakeBorder(src, dst, 5, 5, 5, 5, borderMode);
TEST_CYCLE()
{
cv::copyMakeBorder(src, dst, 5, 5, 5, 5, borderMode);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -291,6 +379,8 @@ PERF_TEST_P(Sz_Depth_Op, ImgProc_Threshold, Combine(
cv::Mat src(size, depth);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -300,6 +390,18 @@ PERF_TEST_P(Sz_Depth_Op, ImgProc_Threshold, Combine(
{
cv::gpu::threshold(d_src, d_dst, 100.0, 255.0, threshOp);
}
}
else
{
cv::Mat dst;
cv::threshold(src, dst, 100.0, 255.0, threshOp);
TEST_CYCLE()
{
cv::threshold(src, dst, 100.0, 255.0, threshOp);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -312,6 +414,8 @@ PERF_TEST_P(Sz, ImgProc_Integral, GPU_TYPICAL_MAT_SIZES)
cv::Mat src(size, CV_8UC1);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
@ -322,6 +426,18 @@ PERF_TEST_P(Sz, ImgProc_Integral, GPU_TYPICAL_MAT_SIZES)
{
cv::gpu::integralBuffered(d_src, d_dst, d_buf);
}
}
else
{
cv::Mat dst;
cv::integral(src, dst);
TEST_CYCLE()
{
cv::integral(src, dst);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -334,6 +450,8 @@ PERF_TEST_P(Sz, ImgProc_IntegralSqr, GPU_TYPICAL_MAT_SIZES)
cv::Mat src(size, CV_8UC1);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -343,6 +461,11 @@ PERF_TEST_P(Sz, ImgProc_IntegralSqr, GPU_TYPICAL_MAT_SIZES)
{
cv::gpu::sqrIntegral(d_src, d_dst);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -356,6 +479,8 @@ PERF_TEST_P(Sz_Depth, ImgProc_HistEvenC1, Combine(GPU_TYPICAL_MAT_SIZES, Values(
cv::Mat src(size, depth);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_hist;
cv::gpu::GpuMat d_buf;
@ -366,6 +491,24 @@ PERF_TEST_P(Sz_Depth, ImgProc_HistEvenC1, Combine(GPU_TYPICAL_MAT_SIZES, Values(
{
cv::gpu::histEven(d_src, d_hist, d_buf, 30, 0, 180);
}
}
else
{
int hbins = 30;
float hranges[] = {0.0f, 180.0f};
int histSize[] = {hbins};
const float* ranges[] = {hranges};
int channels[] = {0};
cv::Mat hist;
cv::calcHist(&src, 1, channels, cv::Mat(), hist, 1, histSize, ranges);
TEST_CYCLE()
{
cv::calcHist(&src, 1, channels, cv::Mat(), hist, 1, histSize, ranges);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -383,6 +526,8 @@ PERF_TEST_P(Sz_Depth, ImgProc_HistEvenC4, Combine(GPU_TYPICAL_MAT_SIZES, Values(
int lowerLevel[] = {0, 0, 0, 0};
int upperLevel[] = {180, 180, 180, 180};
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_hist[4];
cv::gpu::GpuMat d_buf;
@ -393,6 +538,11 @@ PERF_TEST_P(Sz_Depth, ImgProc_HistEvenC4, Combine(GPU_TYPICAL_MAT_SIZES, Values(
{
cv::gpu::histEven(d_src, d_hist, d_buf, histSize, lowerLevel, upperLevel);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -405,6 +555,8 @@ PERF_TEST_P(Sz, ImgProc_CalcHist, GPU_TYPICAL_MAT_SIZES)
cv::Mat src(size, CV_8UC1);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_hist;
cv::gpu::GpuMat d_buf;
@ -415,6 +567,11 @@ PERF_TEST_P(Sz, ImgProc_CalcHist, GPU_TYPICAL_MAT_SIZES)
{
cv::gpu::calcHist(d_src, d_hist, d_buf);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -427,6 +584,8 @@ PERF_TEST_P(Sz, ImgProc_EqualizeHist, GPU_TYPICAL_MAT_SIZES)
cv::Mat src(size, CV_8UC1);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_hist;
@ -438,6 +597,18 @@ PERF_TEST_P(Sz, ImgProc_EqualizeHist, GPU_TYPICAL_MAT_SIZES)
{
cv::gpu::equalizeHist(d_src, d_dst, d_hist, d_buf);
}
}
else
{
cv::Mat dst;
cv::equalizeHist(src, dst);
TEST_CYCLE()
{
cv::equalizeHist(src, dst);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -450,6 +621,8 @@ PERF_TEST_P(Sz, ImgProc_ColumnSum, GPU_TYPICAL_MAT_SIZES)
cv::Mat src(size, CV_32FC1);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -459,6 +632,11 @@ PERF_TEST_P(Sz, ImgProc_ColumnSum, GPU_TYPICAL_MAT_SIZES)
{
cv::gpu::columnSum(d_src, d_dst);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -478,6 +656,8 @@ PERF_TEST_P(Image_AppertureSz_L2gradient, ImgProc_Canny, Combine(
cv::Mat image = readImage(fileName, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
if (runOnGpu)
{
cv::gpu::GpuMat d_image(image);
cv::gpu::GpuMat d_dst;
cv::gpu::CannyBuf d_buf;
@ -488,6 +668,18 @@ PERF_TEST_P(Image_AppertureSz_L2gradient, ImgProc_Canny, Combine(
{
cv::gpu::Canny(d_image, d_buf, d_dst, 50.0, 100.0, apperture_size, useL2gradient);
}
}
else
{
cv::Mat dst;
cv::Canny(image, dst, 50.0, 100.0, apperture_size, useL2gradient);
TEST_CYCLE()
{
cv::Canny(image, dst, 50.0, 100.0, apperture_size, useL2gradient);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -497,7 +689,7 @@ DEF_PARAM_TEST_1(Image, string);
PERF_TEST_P(Image, ImgProc_MeanShiftFiltering, Values<string>("gpu/meanshift/cones.png"))
{
declare.time(5.0);
declare.time(15.0);
cv::Mat img = readImage(GetParam());
ASSERT_FALSE(img.empty());
@ -505,6 +697,8 @@ PERF_TEST_P(Image, ImgProc_MeanShiftFiltering, Values<string>("gpu/meanshift/con
cv::Mat rgba;
cv::cvtColor(img, rgba, cv::COLOR_BGR2BGRA);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(rgba);
cv::gpu::GpuMat d_dst;
@ -514,6 +708,18 @@ PERF_TEST_P(Image, ImgProc_MeanShiftFiltering, Values<string>("gpu/meanshift/con
{
cv::gpu::meanShiftFiltering(d_src, d_dst, 50, 50);
}
}
else
{
cv::Mat dst;
cv::pyrMeanShiftFiltering(img, dst, 50, 50);
TEST_CYCLE()
{
cv::pyrMeanShiftFiltering(img, dst, 50, 50);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -529,6 +735,8 @@ PERF_TEST_P(Image, ImgProc_MeanShiftProc, Values<string>("gpu/meanshift/cones.pn
cv::Mat rgba;
cv::cvtColor(img, rgba, cv::COLOR_BGR2BGRA);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(rgba);
cv::gpu::GpuMat d_dstr;
cv::gpu::GpuMat d_dstsp;
@ -539,6 +747,11 @@ PERF_TEST_P(Image, ImgProc_MeanShiftProc, Values<string>("gpu/meanshift/cones.pn
{
cv::gpu::meanShiftProc(d_src, d_dstr, d_dstsp, 50, 50);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -556,6 +769,8 @@ PERF_TEST_P(Image, ImgProc_MeanShiftSegmentation, Values<string>("gpu/meanshift/
cv::Mat dst;
if (runOnGpu)
{
cv::gpu::GpuMat d_src(rgba);
cv::gpu::meanShiftSegmentation(d_src, dst, 10, 10, 20);
@ -564,6 +779,11 @@ PERF_TEST_P(Image, ImgProc_MeanShiftSegmentation, Values<string>("gpu/meanshift/
{
cv::gpu::meanShiftSegmentation(d_src, dst, 10, 10, 20);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -583,6 +803,8 @@ PERF_TEST_P(Sz_Depth_Cn, ImgProc_BlendLinear, Combine(GPU_TYPICAL_MAT_SIZES, Val
cv::Mat img2(size, type);
fillRandom(img2);
if (runOnGpu)
{
cv::gpu::GpuMat d_img1(img1);
cv::gpu::GpuMat d_img2(img2);
cv::gpu::GpuMat d_weights1(size, CV_32FC1, cv::Scalar::all(0.5));
@ -595,6 +817,11 @@ PERF_TEST_P(Sz_Depth_Cn, ImgProc_BlendLinear, Combine(GPU_TYPICAL_MAT_SIZES, Val
{
cv::gpu::blendLinear(d_img1, d_img2, d_weights1, d_weights2, d_dst);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -604,17 +831,25 @@ DEF_PARAM_TEST(Sz_KernelSz_Ccorr, cv::Size, int, bool);
PERF_TEST_P(Sz_KernelSz_Ccorr, ImgProc_Convolve, Combine(GPU_TYPICAL_MAT_SIZES, Values(17, 27, 32, 64), Bool()))
{
declare.time(2.0);
declare.time(10.0);
cv::Size size = GET_PARAM(0);
int templ_size = GET_PARAM(1);
bool ccorr = GET_PARAM(2);
cv::Mat image(size, CV_32FC1);
image.setTo(1.0);
cv::Mat templ(templ_size, templ_size, CV_32FC1);
templ.setTo(1.0);
if (runOnGpu)
{
cv::gpu::GpuMat d_image = cv::gpu::createContinuous(size, CV_32FC1);
d_image.setTo(cv::Scalar(1.0));
d_image.upload(image);
cv::gpu::GpuMat d_templ = cv::gpu::createContinuous(templ_size, templ_size, CV_32FC1);
d_templ.setTo(cv::Scalar(1.0));
d_templ.upload(templ);
cv::gpu::GpuMat d_dst;
cv::gpu::ConvolveBuf d_buf;
@ -625,6 +860,20 @@ PERF_TEST_P(Sz_KernelSz_Ccorr, ImgProc_Convolve, Combine(GPU_TYPICAL_MAT_SIZES,
{
cv::gpu::convolve(d_image, d_templ, d_dst, ccorr, d_buf);
}
}
else
{
ASSERT_FALSE(ccorr);
cv::Mat dst;
cv::filter2D(image, dst, image.depth(), templ);
TEST_CYCLE()
{
cv::filter2D(image, dst, image.depth(), templ);
}
}
}
////////////////////////////////////////////////////////////////////////////////
@ -652,6 +901,8 @@ PERF_TEST_P(Sz_TemplateSz_Cn_Method, ImgProc_MatchTemplate8U, Combine(
cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_8U, cn));
fillRandom(templ);
if (runOnGpu)
{
cv::gpu::GpuMat d_image(image);
cv::gpu::GpuMat d_templ(templ);
cv::gpu::GpuMat d_dst;
@ -662,6 +913,18 @@ PERF_TEST_P(Sz_TemplateSz_Cn_Method, ImgProc_MatchTemplate8U, Combine(
{
cv::gpu::matchTemplate(d_image, d_templ, d_dst, method);
}
}
else
{
cv::Mat dst;
cv::matchTemplate(image, templ, dst, method);
TEST_CYCLE()
{
cv::matchTemplate(image, templ, dst, method);
}
}
};
////////////////////////////////////////////////////////////////////////////////
@ -684,6 +947,8 @@ PERF_TEST_P(Sz_TemplateSz_Cn_Method, ImgProc_MatchTemplate32F, Combine(
cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_32F, cn));
fillRandom(templ);
if (runOnGpu)
{
cv::gpu::GpuMat d_image(image);
cv::gpu::GpuMat d_templ(templ);
cv::gpu::GpuMat d_dst;
@ -694,6 +959,18 @@ PERF_TEST_P(Sz_TemplateSz_Cn_Method, ImgProc_MatchTemplate32F, Combine(
{
cv::gpu::matchTemplate(d_image, d_templ, d_dst, method);
}
}
else
{
cv::Mat dst;
cv::matchTemplate(image, templ, dst, method);
TEST_CYCLE()
{
cv::matchTemplate(image, templ, dst, method);
}
}
};
//////////////////////////////////////////////////////////////////////
@ -716,6 +993,8 @@ PERF_TEST_P(Sz_Flags, ImgProc_MulSpectrums, Combine(
cv::Mat b(size, CV_32FC2);
fillRandom(b, 0, 100);
if (runOnGpu)
{
cv::gpu::GpuMat d_a(a);
cv::gpu::GpuMat d_b(b);
cv::gpu::GpuMat d_dst;
@ -726,6 +1005,18 @@ PERF_TEST_P(Sz_Flags, ImgProc_MulSpectrums, Combine(
{
cv::gpu::mulSpectrums(d_a, d_b, d_dst, flag);
}
}
else
{
cv::Mat dst;
cv::mulSpectrums(a, b, dst, flag);
TEST_CYCLE()
{
cv::mulSpectrums(a, b, dst, flag);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -743,6 +1034,8 @@ PERF_TEST_P(Sz, ImgProc_MulAndScaleSpectrums, GPU_TYPICAL_MAT_SIZES)
cv::Mat src2(size, CV_32FC2);
fillRandom(src2, 0, 100);
if (runOnGpu)
{
cv::gpu::GpuMat d_src1(src1);
cv::gpu::GpuMat d_src2(src2);
cv::gpu::GpuMat d_dst;
@ -753,6 +1046,11 @@ PERF_TEST_P(Sz, ImgProc_MulAndScaleSpectrums, GPU_TYPICAL_MAT_SIZES)
{
cv::gpu::mulAndScaleSpectrums(d_src1, d_src2, d_dst, cv::DFT_ROWS, scale, false);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -762,7 +1060,7 @@ PERF_TEST_P(Sz_Flags, ImgProc_Dft, Combine(
GPU_TYPICAL_MAT_SIZES,
Values(0, DftFlags(cv::DFT_ROWS), DftFlags(cv::DFT_INVERSE))))
{
declare.time(2.0);
declare.time(10.0);
cv::Size size = GET_PARAM(0);
int flag = GET_PARAM(1);
@ -770,6 +1068,8 @@ PERF_TEST_P(Sz_Flags, ImgProc_Dft, Combine(
cv::Mat src(size, CV_32FC2);
fillRandom(src, 0, 100);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -779,6 +1079,18 @@ PERF_TEST_P(Sz_Flags, ImgProc_Dft, Combine(
{
cv::gpu::dft(d_src, d_dst, size, flag);
}
}
else
{
cv::Mat dst;
cv::dft(src, dst, flag);
TEST_CYCLE()
{
cv::dft(src, dst, flag);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -793,8 +1105,6 @@ PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, ImgProc_CornerHarris, Combine(
Values(3, 5, 7),
Values(0, 3, 5, 7)))
{
double k = 0.5;
string fileName = GET_PARAM(0);
int type = GET_PARAM(1);
int borderMode = GET_PARAM(2);
@ -803,9 +1113,12 @@ PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, ImgProc_CornerHarris, Combine(
cv::Mat img = readImage(fileName, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0);
double k = 0.5;
if (runOnGpu)
{
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_Dx;
@ -818,6 +1131,18 @@ PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, ImgProc_CornerHarris, Combine(
{
cv::gpu::cornerHarris(d_img, d_dst, d_Dx, d_Dy, d_buf, blockSize, apertureSize, k, borderMode);
}
}
else
{
cv::Mat dst;
cv::cornerHarris(img, dst, blockSize, apertureSize, k, borderMode);
TEST_CYCLE()
{
cv::cornerHarris(img, dst, blockSize, apertureSize, k, borderMode);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -841,6 +1166,8 @@ PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, ImgProc_CornerMinEigenVal, Com
img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0);
if (runOnGpu)
{
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_Dx;
@ -853,6 +1180,18 @@ PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, ImgProc_CornerMinEigenVal, Com
{
cv::gpu::cornerMinEigenVal(d_img, d_dst, d_Dx, d_Dy, d_buf, blockSize, apertureSize, borderMode);
}
}
else
{
cv::Mat dst;
cv::cornerMinEigenVal(img, dst, blockSize, apertureSize, borderMode);
TEST_CYCLE()
{
cv::cornerMinEigenVal(img, dst, blockSize, apertureSize, borderMode);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -866,6 +1205,8 @@ PERF_TEST_P(Sz, ImgProc_BuildWarpPlaneMaps, GPU_TYPICAL_MAT_SIZES)
cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1);
cv::Mat T = cv::Mat::zeros(1, 3, CV_32F);
if (runOnGpu)
{
cv::gpu::GpuMat d_map_x;
cv::gpu::GpuMat d_map_y;
@ -875,6 +1216,11 @@ PERF_TEST_P(Sz, ImgProc_BuildWarpPlaneMaps, GPU_TYPICAL_MAT_SIZES)
{
cv::gpu::buildWarpPlaneMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, T, 1.0, d_map_x, d_map_y);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -887,6 +1233,8 @@ PERF_TEST_P(Sz, ImgProc_BuildWarpCylindricalMaps, GPU_TYPICAL_MAT_SIZES)
cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1);
cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1);
if (runOnGpu)
{
cv::gpu::GpuMat d_map_x;
cv::gpu::GpuMat d_map_y;
@ -896,6 +1244,11 @@ PERF_TEST_P(Sz, ImgProc_BuildWarpCylindricalMaps, GPU_TYPICAL_MAT_SIZES)
{
cv::gpu::buildWarpCylindricalMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, 1.0, d_map_x, d_map_y);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -908,6 +1261,8 @@ PERF_TEST_P(Sz, ImgProc_BuildWarpSphericalMaps, GPU_TYPICAL_MAT_SIZES)
cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1);
cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1);
if (runOnGpu)
{
cv::gpu::GpuMat d_map_x;
cv::gpu::GpuMat d_map_y;
@ -917,6 +1272,11 @@ PERF_TEST_P(Sz, ImgProc_BuildWarpSphericalMaps, GPU_TYPICAL_MAT_SIZES)
{
cv::gpu::buildWarpSphericalMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, 1.0, d_map_x, d_map_y);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -940,6 +1300,8 @@ PERF_TEST_P(Sz_Depth_Cn_Inter, ImgProc_Rotate, Combine(
cv::Mat src(size, type);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -949,6 +1311,11 @@ PERF_TEST_P(Sz_Depth_Cn_Inter, ImgProc_Rotate, Combine(
{
cv::gpu::rotate(d_src, d_dst, size, 30.0, 0, 0, interpolation);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -968,6 +1335,8 @@ PERF_TEST_P(Sz_Depth_Cn, ImgProc_PyrDown, Combine(
cv::Mat src(size, type);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -977,6 +1346,18 @@ PERF_TEST_P(Sz_Depth_Cn, ImgProc_PyrDown, Combine(
{
cv::gpu::pyrDown(d_src, d_dst);
}
}
else
{
cv::Mat dst;
cv::pyrDown(src, dst);
TEST_CYCLE()
{
cv::pyrDown(src, dst);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -996,6 +1377,8 @@ PERF_TEST_P(Sz_Depth_Cn, ImgProc_PyrUp, Combine(
cv::Mat src(size, type);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -1005,6 +1388,18 @@ PERF_TEST_P(Sz_Depth_Cn, ImgProc_PyrUp, Combine(
{
cv::gpu::pyrUp(d_src, d_dst);
}
}
else
{
cv::Mat dst;
cv::pyrUp(src, dst);
TEST_CYCLE()
{
cv::pyrUp(src, dst);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -1049,6 +1444,8 @@ PERF_TEST_P(Sz_Depth_Code, ImgProc_CvtColor, Combine(
cv::Mat src(size, CV_MAKETYPE(depth, info.scn));
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -1058,6 +1455,18 @@ PERF_TEST_P(Sz_Depth_Code, ImgProc_CvtColor, Combine(
{
cv::gpu::cvtColor(d_src, d_dst, info.code, info.dcn);
}
}
else
{
cv::Mat dst;
cv::cvtColor(src, dst, info.code, info.dcn);
TEST_CYCLE()
{
cv::cvtColor(src, dst, info.code, info.dcn);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -1072,6 +1481,8 @@ PERF_TEST_P(Sz, ImgProc_SwapChannels, GPU_TYPICAL_MAT_SIZES)
const int dstOrder[] = {2, 1, 0, 3};
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::swapChannels(d_src, dstOrder);
@ -1080,6 +1491,11 @@ PERF_TEST_P(Sz, ImgProc_SwapChannels, GPU_TYPICAL_MAT_SIZES)
{
cv::gpu::swapChannels(d_src, dstOrder);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -1102,6 +1518,8 @@ PERF_TEST_P(Sz_Type_Op, ImgProc_AlphaComp, Combine(GPU_TYPICAL_MAT_SIZES, Values
cv::Mat img2(size, type);
fillRandom(img2);
if (runOnGpu)
{
cv::gpu::GpuMat d_img1(img1);
cv::gpu::GpuMat d_img2(img2);
cv::gpu::GpuMat d_dst;
@ -1112,6 +1530,11 @@ PERF_TEST_P(Sz_Type_Op, ImgProc_AlphaComp, Combine(GPU_TYPICAL_MAT_SIZES, Values
{
cv::gpu::alphaComp(d_img1, d_img2, d_dst, alpha_op);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -1128,6 +1551,8 @@ PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidBuild, Combine(GPU_TYPICAL_MAT_SIZE
cv::Mat src(size, type);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::ImagePyramid d_pyr;
@ -1138,6 +1563,11 @@ PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidBuild, Combine(GPU_TYPICAL_MAT_SIZE
{
d_pyr.build(d_src, 5);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -1156,6 +1586,8 @@ PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidGetLayer, Combine(GPU_TYPICAL_MAT_S
cv::Size dstSize(size.width / 2 + 10, size.height / 2 + 10);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -1167,6 +1599,11 @@ PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidGetLayer, Combine(GPU_TYPICAL_MAT_S
{
d_pyr.getLayer(d_dst, dstSize);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////////////////////
@ -1197,6 +1634,8 @@ PERF_TEST_P(Sz_DoSort, ImgProc_HoughLines, Combine(GPU_TYPICAL_MAT_SIZES, Bool()
cv::line(src, p1, p2, cv::Scalar::all(255), 2);
}
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_lines;
cv::gpu::GpuMat d_accum;
@ -1208,6 +1647,17 @@ PERF_TEST_P(Sz_DoSort, ImgProc_HoughLines, Combine(GPU_TYPICAL_MAT_SIZES, Bool()
{
cv::gpu::HoughLines(d_src, d_lines, d_accum, d_buf, rho, theta, threshold, doSort);
}
}
else
{
std::vector<cv::Vec2f> lines;
cv::HoughLines(src, lines, rho, theta, threshold);
TEST_CYCLE()
{
cv::HoughLines(src, lines, rho, theta, threshold);
}
}
}
} // namespace

View File

@ -7,12 +7,102 @@ namespace {
DEF_PARAM_TEST_1(Image, string);
struct GreedyLabeling
{
struct dot
{
int x;
int y;
static dot make(int i, int j)
{
dot d; d.x = i; d.y = j;
return d;
}
};
struct InInterval
{
InInterval(const int& _lo, const int& _hi) : lo(-_lo), hi(_hi) {};
const int lo, hi;
bool operator() (const unsigned char a, const unsigned char b) const
{
int d = a - b;
return lo <= d && d <= hi;
}
};
GreedyLabeling(cv::Mat img)
: image(img), _labels(image.size(), CV_32SC1, cv::Scalar::all(-1)) {stack = new dot[image.cols * image.rows];}
~GreedyLabeling(){delete[] stack;}
void operator() (cv::Mat labels) const
{
labels.setTo(cv::Scalar::all(-1));
InInterval inInt(0, 2);
int cc = -1;
int* dist_labels = (int*)labels.data;
int pitch = labels.step1();
unsigned char* source = (unsigned char*)image.data;
int width = image.cols;
int height = image.rows;
for (int j = 0; j < image.rows; ++j)
for (int i = 0; i < image.cols; ++i)
{
if (dist_labels[j * pitch + i] != -1) continue;
dot* top = stack;
dot p = dot::make(i, j);
cc++;
dist_labels[j * pitch + i] = cc;
while (top >= stack)
{
int* dl = &dist_labels[p.y * pitch + p.x];
unsigned char* sp = &source[p.y * image.step1() + p.x];
dl[0] = cc;
//right
if( p.x < (width - 1) && dl[ +1] == -1 && inInt(sp[0], sp[+1]))
*top++ = dot::make(p.x + 1, p.y);
//left
if( p.x > 0 && dl[-1] == -1 && inInt(sp[0], sp[-1]))
*top++ = dot::make(p.x - 1, p.y);
//bottom
if( p.y < (height - 1) && dl[+pitch] == -1 && inInt(sp[0], sp[+image.step1()]))
*top++ = dot::make(p.x, p.y + 1);
//top
if( p.y > 0 && dl[-pitch] == -1 && inInt(sp[0], sp[-image.step1()]))
*top++ = dot::make(p.x, p.y - 1);
p = *--top;
}
}
}
cv::Mat image;
cv::Mat _labels;
dot* stack;
};
PERF_TEST_P(Image, Labeling_ConnectedComponents, Values<string>("gpu/labeling/aloe-disp.png"))
{
declare.time(1.0);
cv::Mat image = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
// cv::threshold(image, image, 150, 255, CV_THRESH_BINARY);
if (runOnGpu)
{
cv::gpu::GpuMat mask;
mask.create(image.rows, image.cols, CV_8UC1);
@ -23,12 +113,24 @@ PERF_TEST_P(Image, Labeling_ConnectedComponents, Values<string>("gpu/labeling/al
ASSERT_NO_THROW(cv::gpu::labelComponents(mask, components));
declare.time(1.0);
TEST_CYCLE()
{
cv::gpu::labelComponents(mask, components);
}
}
else
{
GreedyLabeling host(image);
host(host._labels);
declare.time(1.0);
TEST_CYCLE()
{
host(host._labels);
}
}
}
} // namespace

View File

@ -18,6 +18,8 @@ PERF_TEST_P(Sz_Depth_Cn, MatOp_SetTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8
cv::Scalar val(1, 2, 3, 4);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(size, type);
d_src.setTo(val);
@ -26,6 +28,18 @@ PERF_TEST_P(Sz_Depth_Cn, MatOp_SetTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8
{
d_src.setTo(val);
}
}
else
{
cv::Mat src(size, type);
src.setTo(val);
TEST_CYCLE()
{
src.setTo(val);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -47,6 +61,8 @@ PERF_TEST_P(Sz_Depth_Cn, MatOp_SetToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Value
cv::Scalar val(1, 2, 3, 4);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_mask(mask);
@ -56,6 +72,16 @@ PERF_TEST_P(Sz_Depth_Cn, MatOp_SetToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Value
{
d_src.setTo(val, d_mask);
}
}
else
{
src.setTo(val, mask);
TEST_CYCLE()
{
src.setTo(val, mask);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -75,6 +101,8 @@ PERF_TEST_P(Sz_Depth_Cn, MatOp_CopyToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Valu
cv::Mat mask(size, CV_8UC1);
fillRandom(mask, 0, 2);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_mask(mask);
cv::gpu::GpuMat d_dst;
@ -85,6 +113,18 @@ PERF_TEST_P(Sz_Depth_Cn, MatOp_CopyToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Valu
{
d_src.copyTo(d_dst, d_mask);
}
}
else
{
cv::Mat dst;
src.copyTo(dst, mask);
TEST_CYCLE()
{
src.copyTo(dst, mask);
}
}
}
//////////////////////////////////////////////////////////////////////
@ -101,6 +141,8 @@ PERF_TEST_P(Sz_2Depth, MatOp_ConvertTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV
cv::Mat src(size, depth1);
fillRandom(src);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
@ -110,6 +152,18 @@ PERF_TEST_P(Sz_2Depth, MatOp_ConvertTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV
{
d_src.convertTo(d_dst, depth2, 0.5, 1.0);
}
}
else
{
cv::Mat dst;
src.convertTo(dst, depth2, 0.5, 1.0);
TEST_CYCLE()
{
src.convertTo(dst, depth2, 0.5, 1.0);
}
}
}
} // namespace

View File

@ -17,6 +17,8 @@ PERF_TEST_P(Image, ObjDetect_HOG, Values<string>("gpu/hog/road.png"))
std::vector<cv::Rect> found_locations;
if (runOnGpu)
{
cv::gpu::GpuMat d_img(img);
cv::gpu::HOGDescriptor d_hog;
@ -28,6 +30,19 @@ PERF_TEST_P(Image, ObjDetect_HOG, Values<string>("gpu/hog/road.png"))
{
d_hog.detectMultiScale(d_img, found_locations);
}
}
else
{
cv::HOGDescriptor hog;
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
hog.detectMultiScale(img, found_locations);
TEST_CYCLE()
{
hog.detectMultiScale(img, found_locations);
}
}
}
///////////////////////////////////////////////////////////////
@ -42,8 +57,9 @@ PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier,
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (runOnGpu)
{
cv::gpu::CascadeClassifier_GPU d_cascade;
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
cv::gpu::GpuMat d_img(img);
@ -55,6 +71,21 @@ PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier,
{
d_cascade.detectMultiScale(d_img, d_objects_buffer);
}
}
else
{
cv::CascadeClassifier cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml")));
std::vector<cv::Rect> rects;
cascade.detectMultiScale(img, rects);
TEST_CYCLE()
{
cascade.detectMultiScale(img, rects);
}
}
}
///////////////////////////////////////////////////////////////
@ -66,8 +97,9 @@ PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier,
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (runOnGpu)
{
cv::gpu::CascadeClassifier_GPU d_cascade;
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
cv::gpu::GpuMat d_img(img);
@ -79,6 +111,21 @@ PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier,
{
d_cascade.detectMultiScale(d_img, d_gpu_rects);
}
}
else
{
cv::CascadeClassifier cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml")));
std::vector<cv::Rect> rects;
cascade.detectMultiScale(img, rects);
TEST_CYCLE()
{
cascade.detectMultiScale(img, rects);
}
}
}
} // namespace

View File

@ -3,6 +3,14 @@
using namespace std;
using namespace testing;
namespace cv
{
template<> void Ptr<CvBGStatModel>::delete_obj()
{
cvReleaseBGStatModel(&obj);
}
}
namespace {
//////////////////////////////////////////////////////
@ -25,6 +33,8 @@ PERF_TEST_P(ImagePair, Video_BroxOpticalFlow, Values<pair_string>(make_pair("gpu
frame0.convertTo(frame0, CV_32FC1, 1.0 / 255.0);
frame1.convertTo(frame1, CV_32FC1, 1.0 / 255.0);
if (runOnGpu)
{
cv::gpu::GpuMat d_frame0(frame0);
cv::gpu::GpuMat d_frame1(frame1);
cv::gpu::GpuMat d_u;
@ -39,6 +49,11 @@ PERF_TEST_P(ImagePair, Video_BroxOpticalFlow, Values<pair_string>(make_pair("gpu
{
d_flow(d_frame0, d_frame1, d_u, d_v);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////
@ -55,6 +70,8 @@ PERF_TEST_P(ImagePair, Video_InterpolateFrames, Values<pair_string>(make_pair("g
frame0.convertTo(frame0, CV_32FC1, 1.0 / 255.0);
frame1.convertTo(frame1, CV_32FC1, 1.0 / 255.0);
if (runOnGpu)
{
cv::gpu::GpuMat d_frame0(frame0);
cv::gpu::GpuMat d_frame1(frame1);
cv::gpu::GpuMat d_fu, d_fv;
@ -75,6 +92,11 @@ PERF_TEST_P(ImagePair, Video_InterpolateFrames, Values<pair_string>(make_pair("g
{
cv::gpu::interpolateFrames(d_frame0, d_frame1, d_fu, d_fv, d_bu, d_bv, 0.5f, d_newFrame, d_buf);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////
@ -91,6 +113,8 @@ PERF_TEST_P(ImagePair, Video_CreateOpticalFlowNeedleMap, Values<pair_string>(mak
frame0.convertTo(frame0, CV_32FC1, 1.0 / 255.0);
frame1.convertTo(frame1, CV_32FC1, 1.0 / 255.0);
if (runOnGpu)
{
cv::gpu::GpuMat d_frame0(frame0);
cv::gpu::GpuMat d_frame1(frame1);
cv::gpu::GpuMat d_u;
@ -109,6 +133,11 @@ PERF_TEST_P(ImagePair, Video_CreateOpticalFlowNeedleMap, Values<pair_string>(mak
{
cv::gpu::createOpticalFlowNeedleMap(d_u, d_v, d_vertex, d_colors);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////
@ -124,6 +153,8 @@ PERF_TEST_P(Image_MinDistance, Video_GoodFeaturesToTrack, Combine(Values<string>
cv::Mat image = readImage(fileName, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
if (runOnGpu)
{
cv::gpu::GoodFeaturesToTrackDetector_GPU d_detector(8000, 0.01, minDistance);
cv::gpu::GpuMat d_image(image);
@ -135,6 +166,18 @@ PERF_TEST_P(Image_MinDistance, Video_GoodFeaturesToTrack, Combine(Values<string>
{
d_detector(d_image, d_pts);
}
}
else
{
cv::Mat pts;
cv::goodFeaturesToTrack(image, pts, 8000, 0.01, minDistance);
TEST_CYCLE()
{
cv::goodFeaturesToTrack(image, pts, 8000, 0.01, minDistance);
}
}
}
//////////////////////////////////////////////////////
@ -150,6 +193,8 @@ PERF_TEST_P(ImagePair_Gray_NPts_WinSz_Levels_Iters, Video_PyrLKOpticalFlowSparse
Values(1, 2, 3),
Values(1, 10, 30)))
{
declare.time(20.0);
pair_string imagePair = GET_PARAM(0);
bool useGray = GET_PARAM(1);
int points = GET_PARAM(2);
@ -169,10 +214,12 @@ PERF_TEST_P(ImagePair_Gray_NPts_WinSz_Levels_Iters, Video_PyrLKOpticalFlowSparse
else
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
cv::gpu::GpuMat d_pts;
cv::Mat pts;
cv::goodFeaturesToTrack(gray_frame, pts, points, 0.01, 0.0);
cv::gpu::GoodFeaturesToTrackDetector_GPU d_detector(points, 0.01, 0.0);
d_detector(cv::gpu::GpuMat(gray_frame), d_pts);
if (runOnGpu)
{
cv::gpu::GpuMat d_pts(pts);
cv::gpu::PyrLKOpticalFlow d_pyrLK;
d_pyrLK.winSize = cv::Size(winSize, winSize);
@ -190,6 +237,23 @@ PERF_TEST_P(ImagePair_Gray_NPts_WinSz_Levels_Iters, Video_PyrLKOpticalFlowSparse
{
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status);
}
}
else
{
cv::Mat nextPts;
cv::Mat status;
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(),
cv::Size(winSize, winSize), levels - 1,
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01));
TEST_CYCLE()
{
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(),
cv::Size(winSize, winSize), levels - 1,
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01));
}
}
}
//////////////////////////////////////////////////////
@ -216,6 +280,8 @@ PERF_TEST_P(ImagePair_WinSz_Levels_Iters, Video_PyrLKOpticalFlowDense, Combine(
cv::Mat frame1 = readImage(imagePair.second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
if (runOnGpu)
{
cv::gpu::GpuMat d_frame0(frame0);
cv::gpu::GpuMat d_frame1(frame1);
cv::gpu::GpuMat d_u;
@ -232,6 +298,11 @@ PERF_TEST_P(ImagePair_WinSz_Levels_Iters, Video_PyrLKOpticalFlowDense, Combine(
{
d_pyrLK.dense(d_frame0, d_frame1, d_u, d_v);
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////
@ -247,12 +318,29 @@ PERF_TEST_P(ImagePair, Video_FarnebackOpticalFlow, Values<pair_string>(make_pair
cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
int numLevels = 5;
double pyrScale = 0.5;
int winSize = 13;
int numIters = 10;
int polyN = 5;
double polySigma = 1.1;
int flags = 0;
if (runOnGpu)
{
cv::gpu::GpuMat d_frame0(frame0);
cv::gpu::GpuMat d_frame1(frame1);
cv::gpu::GpuMat d_u;
cv::gpu::GpuMat d_v;
cv::gpu::FarnebackOpticalFlow d_farneback;
d_farneback.numLevels = numLevels;
d_farneback.pyrScale = pyrScale;
d_farneback.winSize = winSize;
d_farneback.numIters = numIters;
d_farneback.polyN = polyN;
d_farneback.polySigma = polySigma;
d_farneback.flags = flags;
d_farneback(d_frame0, d_frame1, d_u, d_v);
@ -260,6 +348,18 @@ PERF_TEST_P(ImagePair, Video_FarnebackOpticalFlow, Values<pair_string>(make_pair
{
d_farneback(d_frame0, d_frame1, d_u, d_v);
}
}
else
{
cv::Mat flow;
cv::calcOpticalFlowFarneback(frame0, frame1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags);
TEST_CYCLE()
{
cv::calcOpticalFlowFarneback(frame0, frame1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags);
}
}
}
//////////////////////////////////////////////////////
@ -269,7 +369,7 @@ DEF_PARAM_TEST_1(Video, string);
PERF_TEST_P(Video, Video_FGDStatModel, Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"))
{
declare.time(10);
declare.time(60);
string inputFile = perf::TestBase::getDataPath(GetParam());
@ -280,7 +380,10 @@ PERF_TEST_P(Video, Video_FGDStatModel, Values("gpu/video/768x576.avi", "gpu/vide
cap >> frame;
ASSERT_FALSE(frame.empty());
if (runOnGpu)
{
cv::gpu::GpuMat d_frame(frame);
cv::gpu::FGDStatModel d_model(4);
d_model.create(d_frame);
@ -295,6 +398,24 @@ PERF_TEST_P(Video, Video_FGDStatModel, Values("gpu/video/768x576.avi", "gpu/vide
d_model.update(d_frame);
stopTimer();
}
}
else
{
IplImage ipl_frame = frame;
cv::Ptr<CvBGStatModel> model(cvCreateFGDStatModel(&ipl_frame));
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
ipl_frame = frame;
startTimer(); next();
cvUpdateBGStatModel(&ipl_frame, model);
stopTimer();
}
}
}
//////////////////////////////////////////////////////
@ -313,10 +434,6 @@ PERF_TEST_P(Video_Cn_LearningRate, Video_MOG, Combine(Values("gpu/video/768x576.
cv::Mat frame;
cv::gpu::GpuMat d_frame;
cv::gpu::MOG_GPU d_mog;
cv::gpu::GpuMat d_foreground;
cap >> frame;
ASSERT_FALSE(frame.empty());
@ -330,7 +447,11 @@ PERF_TEST_P(Video_Cn_LearningRate, Video_MOG, Combine(Values("gpu/video/768x576.
cv::swap(temp, frame);
}
d_frame.upload(frame);
if (runOnGpu)
{
cv::gpu::GpuMat d_frame(frame);
cv::gpu::MOG_GPU d_mog;
cv::gpu::GpuMat d_foreground;
d_mog(d_frame, d_foreground, learningRate);
@ -355,6 +476,34 @@ PERF_TEST_P(Video_Cn_LearningRate, Video_MOG, Combine(Values("gpu/video/768x576.
d_mog(d_frame, d_foreground, learningRate);
stopTimer();
}
}
else
{
cv::BackgroundSubtractorMOG mog;
cv::Mat foreground;
mog(frame, foreground, learningRate);
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
startTimer(); next();
mog(frame, foreground, learningRate);
stopTimer();
}
}
}
//////////////////////////////////////////////////////
@ -372,10 +521,6 @@ PERF_TEST_P(Video_Cn, Video_MOG2, Combine(Values("gpu/video/768x576.avi", "gpu/v
cv::Mat frame;
cv::gpu::GpuMat d_frame;
cv::gpu::MOG2_GPU d_mog2;
cv::gpu::GpuMat d_foreground;
cap >> frame;
ASSERT_FALSE(frame.empty());
@ -389,7 +534,11 @@ PERF_TEST_P(Video_Cn, Video_MOG2, Combine(Values("gpu/video/768x576.avi", "gpu/v
cv::swap(temp, frame);
}
d_frame.upload(frame);
if (runOnGpu)
{
cv::gpu::GpuMat d_frame(frame);
cv::gpu::MOG2_GPU d_mog2;
cv::gpu::GpuMat d_foreground;
d_mog2(d_frame, d_foreground);
@ -414,6 +563,34 @@ PERF_TEST_P(Video_Cn, Video_MOG2, Combine(Values("gpu/video/768x576.avi", "gpu/v
d_mog2(d_frame, d_foreground);
stopTimer();
}
}
else
{
cv::BackgroundSubtractorMOG2 mog2;
cv::Mat foreground;
mog2(frame, foreground);
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
startTimer(); next();
mog2(frame, foreground);
stopTimer();
}
}
}
//////////////////////////////////////////////////////
@ -429,6 +606,8 @@ PERF_TEST_P(Video_Cn, Video_MOG2GetBackgroundImage, Combine(Values("gpu/video/76
cv::Mat frame;
if (runOnGpu)
{
cv::gpu::GpuMat d_frame;
cv::gpu::MOG2_GPU d_mog2;
cv::gpu::GpuMat d_foreground;
@ -460,6 +639,38 @@ PERF_TEST_P(Video_Cn, Video_MOG2GetBackgroundImage, Combine(Values("gpu/video/76
{
d_mog2.getBackgroundImage(d_background);
}
}
else
{
cv::BackgroundSubtractorMOG2 mog2;
cv::Mat foreground;
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
mog2(frame, foreground);
}
cv::Mat background;
mog2.getBackgroundImage(background);
TEST_CYCLE()
{
mog2.getBackgroundImage(background);
}
}
}
//////////////////////////////////////////////////////
@ -487,6 +698,8 @@ PERF_TEST_P(Video_Cn, Video_VIBE, Combine(Values("gpu/video/768x576.avi", "gpu/v
cv::swap(temp, frame);
}
if (runOnGpu)
{
cv::gpu::GpuMat d_frame(frame);
cv::gpu::VIBE_GPU d_vibe;
cv::gpu::GpuMat d_foreground;
@ -514,6 +727,11 @@ PERF_TEST_P(Video_Cn, Video_VIBE, Combine(Values("gpu/video/768x576.avi", "gpu/v
d_vibe(d_frame, d_foreground);
stopTimer();
}
}
else
{
FAIL();
}
}
//////////////////////////////////////////////////////
@ -544,6 +762,8 @@ PERF_TEST_P(Video_Cn_MaxFeatures, Video_GMG, Combine(Values("gpu/video/768x576.a
cv::swap(temp, frame);
}
if (runOnGpu)
{
cv::gpu::GpuMat d_frame(frame);
cv::gpu::GpuMat d_fgmask;
@ -577,6 +797,42 @@ PERF_TEST_P(Video_Cn_MaxFeatures, Video_GMG, Combine(Values("gpu/video/768x576.a
d_gmg(d_frame, d_fgmask);
stopTimer();
}
}
else
{
cv::Mat fgmask;
cv::Mat zeros(frame.size(), CV_8UC1, cv::Scalar::all(0));
cv::BackgroundSubtractorGMG gmg;
gmg.set("maxFeatures", maxFeatures);
gmg.initialize(frame.size(), 0.0, 255.0);
gmg(frame, fgmask);
for (int i = 0; i < 150; ++i)
{
cap >> frame;
if (frame.empty())
{
cap.open(inputFile);
cap >> frame;
}
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
startTimer(); next();
gmg(frame, fgmask);
stopTimer();
}
}
}
//////////////////////////////////////////////////////
@ -584,6 +840,8 @@ PERF_TEST_P(Video_Cn_MaxFeatures, Video_GMG, Combine(Values("gpu/video/768x576.a
PERF_TEST_P(Video, Video_VideoWriter, Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"))
{
declare.time(30);
string inputFile = perf::TestBase::getDataPath(GetParam());
string outputFile = cv::tempfile(".avi");
@ -592,13 +850,14 @@ PERF_TEST_P(Video, Video_VideoWriter, Values("gpu/video/768x576.avi", "gpu/video
cv::VideoCapture reader(inputFile);
ASSERT_TRUE( reader.isOpened() );
cv::Mat frame;
if (runOnGpu)
{
cv::gpu::VideoWriter_GPU d_writer;
cv::Mat frame;
cv::gpu::GpuMat d_frame;
declare.time(10);
for (int i = 0; i < 10; ++i)
{
reader >> frame;
@ -613,6 +872,24 @@ PERF_TEST_P(Video, Video_VideoWriter, Values("gpu/video/768x576.avi", "gpu/video
d_writer.write(d_frame);
stopTimer();
}
}
else
{
cv::VideoWriter writer;
for (int i = 0; i < 10; ++i)
{
reader >> frame;
ASSERT_FALSE(frame.empty());
if (!writer.isOpened())
writer.open(outputFile, CV_FOURCC('X', 'V', 'I', 'D'), FPS, frame.size());
startTimer(); next();
writer.write(frame);
stopTimer();
}
}
}
//////////////////////////////////////////////////////
@ -624,6 +901,8 @@ PERF_TEST_P(Video, Video_VideoReader, Values("gpu/video/768x576.avi", "gpu/video
string inputFile = perf::TestBase::getDataPath(GetParam());
if (runOnGpu)
{
cv::gpu::VideoReader_GPU d_reader(inputFile);
ASSERT_TRUE( d_reader.isOpened() );
@ -635,6 +914,21 @@ PERF_TEST_P(Video, Video_VideoReader, Values("gpu/video/768x576.avi", "gpu/video
{
d_reader.read(d_frame);
}
}
else
{
cv::VideoCapture reader(inputFile);
ASSERT_TRUE( reader.isOpened() );
cv::Mat frame;
reader >> frame;
TEST_CYCLE_N(10)
{
reader >> frame;
}
}
}
} // namespace

View File

@ -1,136 +0,0 @@
#include "perf_cpu_precomp.hpp"
#ifdef HAVE_CUDA
//////////////////////////////////////////////////////////////////////
// StereoBM
GPU_PERF_TEST_1(StereoBM, cv::gpu::DeviceInfo)
{
cv::Mat img_l = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img_l.empty());
cv::Mat img_r = readImage("gpu/perf/aloeR.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img_r.empty());
cv::StereoBM bm(0, 256);
cv::Mat dst;
bm(img_l, img_r, dst);
declare.time(5.0);
TEST_CYCLE()
{
bm(img_l, img_r, dst);
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, StereoBM, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////
// ProjectPoints
IMPLEMENT_PARAM_CLASS(Count, int)
GPU_PERF_TEST(ProjectPoints, cv::gpu::DeviceInfo, Count)
{
int count = GET_PARAM(1);
cv::Mat src(1, count, CV_32FC3);
fill(src, -100, 100);
cv::Mat rvec = cv::Mat::ones(1, 3, CV_32FC1);
cv::Mat tvec = cv::Mat::ones(1, 3, CV_32FC1);
cv::Mat camera_mat = cv::Mat::ones(3, 3, CV_32FC1);
cv::Mat dst;
cv::projectPoints(src, rvec, tvec, camera_mat, cv::noArray(), dst);
TEST_CYCLE()
{
cv::projectPoints(src, rvec, tvec, camera_mat, cv::noArray(), dst);
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, ProjectPoints, testing::Combine(
ALL_DEVICES,
testing::Values<Count>(5000, 10000, 20000)));
//////////////////////////////////////////////////////////////////////
// SolvePnPRansac
GPU_PERF_TEST(SolvePnPRansac, cv::gpu::DeviceInfo, Count)
{
int count = GET_PARAM(1);
cv::Mat object(1, count, CV_32FC3);
fill(object, -100, 100);
cv::Mat camera_mat(3, 3, CV_32FC1);
fill(camera_mat, 0.5, 1);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
cv::Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0));
std::vector<cv::Point2f> image_vec;
cv::Mat rvec_gold(1, 3, CV_32FC1);
fill(rvec_gold, 0, 1);
cv::Mat tvec_gold(1, 3, CV_32FC1);
fill(tvec_gold, 0, 1);
cv::projectPoints(object, rvec_gold, tvec_gold, camera_mat, dist_coef, image_vec);
cv::Mat image(1, count, CV_32FC2, &image_vec[0]);
cv::Mat rvec;
cv::Mat tvec;
cv::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
declare.time(10.0);
TEST_CYCLE()
{
cv::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, SolvePnPRansac, testing::Combine(
ALL_DEVICES,
testing::Values<Count>(5000, 10000, 20000)));
//////////////////////////////////////////////////////////////////////
// ReprojectImageTo3D
GPU_PERF_TEST(ReprojectImageTo3D, cv::gpu::DeviceInfo, cv::Size, MatDepth)
{
cv::Size size = GET_PARAM(1);
int depth = GET_PARAM(2);
cv::Mat src(size, depth);
fill(src, 5.0, 30.0);
cv::Mat Q(4, 4, CV_32FC1);
fill(Q, 0.1, 1.0);
cv::Mat dst;
cv::reprojectImageTo3D(src, dst, Q);
TEST_CYCLE()
{
cv::reprojectImageTo3D(src, dst, Q);
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, ReprojectImageTo3D, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values<MatDepth>(CV_8U, CV_16S)));
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1 +0,0 @@
#include "perf_cpu_precomp.hpp"

View File

@ -1,32 +0,0 @@
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# pragma GCC diagnostic ignored "-Wmissing-prototypes" //OSX
#endif
#ifndef __OPENCV_PERF_CPU_PRECOMP_HPP__
#define __OPENCV_PERF_CPU_PRECOMP_HPP__
#include <cstdio>
#include <iostream>
#include "cvconfig.h"
#include "opencv2/ts/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/gpu/gpu.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/video/video.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include "perf_utility.hpp"
#ifdef GTEST_CREATE_SHARED_LIBRARY
#error no modules except ts should have GTEST_CREATE_SHARED_LIBRARY defined
#endif
#endif

View File

@ -1,187 +0,0 @@
#include "perf_cpu_precomp.hpp"
#ifdef HAVE_CUDA
//////////////////////////////////////////////////////////////////////
// SURF
GPU_PERF_TEST_1(SURF, cv::gpu::DeviceInfo)
{
cv::Mat img = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
cv::SURF surf;
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
surf(img, cv::noArray(), keypoints, descriptors);
declare.time(50.0);
TEST_CYCLE()
{
keypoints.clear();
surf(img, cv::noArray(), keypoints, descriptors);
}
}
INSTANTIATE_TEST_CASE_P(Features2D, SURF, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////
// FAST
GPU_PERF_TEST_1(FAST, cv::gpu::DeviceInfo)
{
cv::Mat img = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
std::vector<cv::KeyPoint> keypoints;
cv::FAST(img, keypoints, 20);
TEST_CYCLE()
{
keypoints.clear();
cv::FAST(img, keypoints, 20);
}
}
INSTANTIATE_TEST_CASE_P(Features2D, FAST, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////
// ORB
GPU_PERF_TEST_1(ORB, cv::gpu::DeviceInfo)
{
cv::Mat img = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
cv::ORB orb(4000);
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
orb(img, cv::noArray(), keypoints, descriptors);
TEST_CYCLE()
{
keypoints.clear();
orb(img, cv::noArray(), keypoints, descriptors);
}
}
INSTANTIATE_TEST_CASE_P(Features2D, ORB, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////
// BruteForceMatcher_match
IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
GPU_PERF_TEST(BruteForceMatcher_match, cv::gpu::DeviceInfo, DescriptorSize, NormType)
{
int desc_size = GET_PARAM(1);
int normType = GET_PARAM(2);
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query(3000, desc_size, type);
fill(query, 0.0, 10.0);
cv::Mat train(3000, desc_size, type);
fill(train, 0.0, 10.0);
cv::BFMatcher matcher(normType);
std::vector<cv::DMatch> matches;
matcher.match(query, train, matches);
declare.time(20.0);
TEST_CYCLE()
{
matcher.match(query, train, matches);
}
}
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_match, testing::Combine(
ALL_DEVICES,
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)),
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))));
//////////////////////////////////////////////////////////////////////
// BruteForceMatcher_knnMatch
IMPLEMENT_PARAM_CLASS(K, int)
GPU_PERF_TEST(BruteForceMatcher_knnMatch, cv::gpu::DeviceInfo, DescriptorSize, K, NormType)
{
int desc_size = GET_PARAM(1);
int k = GET_PARAM(2);
int normType = GET_PARAM(3);
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query(3000, desc_size, type);
fill(query, 0.0, 10.0);
cv::Mat train(3000, desc_size, type);
fill(train, 0.0, 10.0);
cv::BFMatcher matcher(normType);
std::vector< std::vector<cv::DMatch> > matches;
matcher.knnMatch(query, train, matches, k);
declare.time(30.0);
TEST_CYCLE()
{
matcher.knnMatch(query, train, matches, k);
}
}
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_knnMatch, testing::Combine(
ALL_DEVICES,
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)),
testing::Values(K(2), K(3)),
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))));
//////////////////////////////////////////////////////////////////////
// BruteForceMatcher_radiusMatch
GPU_PERF_TEST(BruteForceMatcher_radiusMatch, cv::gpu::DeviceInfo, DescriptorSize, NormType)
{
int desc_size = GET_PARAM(1);
int normType = GET_PARAM(2);
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query(3000, desc_size, type);
fill(query, 0.0, 1.0);
cv::Mat train(3000, desc_size, type);
fill(train, 0.0, 1.0);
cv::BFMatcher matcher(normType);
std::vector< std::vector<cv::DMatch> > matches;
matcher.radiusMatch(query, train, matches, 2.0);
declare.time(30.0);
TEST_CYCLE()
{
matcher.radiusMatch(query, train, matches, 2.0);
}
}
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_radiusMatch, testing::Combine(
ALL_DEVICES,
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)),
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))));
#endif

View File

@ -1,283 +0,0 @@
#include "perf_cpu_precomp.hpp"
#ifdef HAVE_CUDA
IMPLEMENT_PARAM_CLASS(KernelSize, int)
//////////////////////////////////////////////////////////////////////
// Blur
GPU_PERF_TEST(Blur, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int ksize = GET_PARAM(3);
cv::Mat src(size, type);
fill(src, 0.0, 255.0);
cv::Mat dst;
cv::blur(src, dst, cv::Size(ksize, ksize));
declare.time(20.0);
TEST_CYCLE()
{
cv::blur(src, dst, cv::Size(ksize, ksize));
}
}
INSTANTIATE_TEST_CASE_P(Filters, Blur, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7))));
//////////////////////////////////////////////////////////////////////
// Sobel
GPU_PERF_TEST(Sobel, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int ksize = GET_PARAM(3);
cv::Mat src(size, type);
fill(src, 0.0, 255.0);
cv::Mat dst;
cv::Sobel(src, dst, -1, 1, 1, ksize);
declare.time(20.0);
TEST_CYCLE()
{
cv::Sobel(src, dst, -1, 1, 1, ksize);
}
}
INSTANTIATE_TEST_CASE_P(Filters, Sobel, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1)),
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7), KernelSize(9), KernelSize(11), KernelSize(13), KernelSize(15))));
//////////////////////////////////////////////////////////////////////
// Scharr
GPU_PERF_TEST(Scharr, cv::gpu::DeviceInfo, cv::Size, MatType)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
cv::Mat src(size, type);
fill(src, 0.0, 255.0);
cv::Mat dst;
cv::Scharr(src, dst, -1, 1, 0);
declare.time(20.0);
TEST_CYCLE()
{
cv::Scharr(src, dst, -1, 1, 0);
}
}
INSTANTIATE_TEST_CASE_P(Filters, Scharr, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1))));
//////////////////////////////////////////////////////////////////////
// GaussianBlur
GPU_PERF_TEST(GaussianBlur, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int ksize = GET_PARAM(3);
cv::Mat src(size, type);
fill(src, 0.0, 255.0);
cv::Mat dst;
cv::GaussianBlur(src, dst, cv::Size(ksize, ksize), 0.5);
declare.time(20.0);
TEST_CYCLE()
{
cv::GaussianBlur(src, dst, cv::Size(ksize, ksize), 0.5);
}
}
INSTANTIATE_TEST_CASE_P(Filters, GaussianBlur, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1)),
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7), KernelSize(9), KernelSize(11), KernelSize(13), KernelSize(15))));
//////////////////////////////////////////////////////////////////////
// Laplacian
GPU_PERF_TEST(Laplacian, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int ksize = GET_PARAM(3);
cv::Mat src(size, type);
fill(src, 0.0, 255.0);
cv::Mat dst;
cv::Laplacian(src, dst, -1, ksize);
declare.time(20.0);
TEST_CYCLE()
{
cv::Laplacian(src, dst, -1, ksize);
}
}
INSTANTIATE_TEST_CASE_P(Filters, Laplacian, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC4)),
testing::Values(KernelSize(1), KernelSize(3))));
//////////////////////////////////////////////////////////////////////
// Erode
GPU_PERF_TEST(Erode, cv::gpu::DeviceInfo, cv::Size, MatType)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
cv::Mat src(size, type);
fill(src, 0.0, 255.0);
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
cv::Mat dst;
cv::erode(src, dst, ker);
declare.time(20.0);
TEST_CYCLE()
{
cv::erode(src, dst, ker);
}
}
INSTANTIATE_TEST_CASE_P(Filters, Erode, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4))));
//////////////////////////////////////////////////////////////////////
// Dilate
GPU_PERF_TEST(Dilate, cv::gpu::DeviceInfo, cv::Size, MatType)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
cv::Mat src(size, type);
fill(src, 0.0, 255.0);
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
cv::Mat dst;
cv::dilate(src, dst, ker);
declare.time(20.0);
TEST_CYCLE()
{
cv::dilate(src, dst, ker);
}
}
INSTANTIATE_TEST_CASE_P(Filters, Dilate, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4))));
//////////////////////////////////////////////////////////////////////
// MorphologyEx
CV_ENUM(MorphOp, cv::MORPH_OPEN, cv::MORPH_CLOSE, cv::MORPH_GRADIENT, cv::MORPH_TOPHAT, cv::MORPH_BLACKHAT)
#define ALL_MORPH_OPS testing::Values(MorphOp(cv::MORPH_OPEN), MorphOp(cv::MORPH_CLOSE), MorphOp(cv::MORPH_GRADIENT), MorphOp(cv::MORPH_TOPHAT), MorphOp(cv::MORPH_BLACKHAT))
GPU_PERF_TEST(MorphologyEx, cv::gpu::DeviceInfo, cv::Size, MatType, MorphOp)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int morphOp = GET_PARAM(3);
cv::Mat src(size, type);
fill(src, 0.0, 255.0);
cv::Mat dst;
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
cv::morphologyEx(src, dst, morphOp, ker);
declare.time(20.0);
TEST_CYCLE()
{
cv::morphologyEx(src, dst, morphOp, ker);
}
}
INSTANTIATE_TEST_CASE_P(Filters, MorphologyEx, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
ALL_MORPH_OPS));
//////////////////////////////////////////////////////////////////////
// Filter2D
GPU_PERF_TEST(Filter2D, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int ksize = GET_PARAM(3);
cv::Mat src(size, type);
fill(src, 0.0, 255.0);
cv::Mat kernel(ksize, ksize, CV_32FC1);
fill(kernel, 0.0, 1.0);
cv::Mat dst;
cv::filter2D(src, dst, -1, kernel);
declare.time(20.0);
TEST_CYCLE()
{
cv::filter2D(src, dst, -1, kernel);
}
}
INSTANTIATE_TEST_CASE_P(Filters, Filter2D, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC4)),
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7), KernelSize(9), KernelSize(11), KernelSize(13), KernelSize(15))));
#endif

View File

@ -1,771 +0,0 @@
#include "perf_cpu_precomp.hpp"
#ifdef HAVE_CUDA
//////////////////////////////////////////////////////////////////////
// Remap
GPU_PERF_TEST(Remap, cv::gpu::DeviceInfo, cv::Size, MatType, Interpolation, BorderMode)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int interpolation = GET_PARAM(3);
int borderMode = GET_PARAM(4);
cv::Mat src(size, type);
fill(src, 0, 255);
cv::Mat xmap(size, CV_32FC1);
fill(xmap, 0, size.width);
cv::Mat ymap(size, CV_32FC1);
fill(ymap, 0, size.height);
cv::Mat dst;
cv::remap(src, dst, xmap, ymap, interpolation, borderMode);
declare.time(20.0);
TEST_CYCLE()
{
cv::remap(src, dst, xmap, ymap, interpolation, borderMode);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, Remap, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4),
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
testing::Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_CONSTANT), BorderMode(cv::BORDER_REFLECT), BorderMode(cv::BORDER_WRAP))));
//////////////////////////////////////////////////////////////////////
// Resize
IMPLEMENT_PARAM_CLASS(Scale, double)
GPU_PERF_TEST(Resize, cv::gpu::DeviceInfo, cv::Size, MatType, Interpolation, Scale)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int interpolation = GET_PARAM(3);
double f = GET_PARAM(4);
cv::Mat src(size, type);
fill(src, 0, 255);
cv::Mat dst;
cv::resize(src, dst, cv::Size(), f, f, interpolation);
declare.time(20.0);
TEST_CYCLE()
{
cv::resize(src, dst, cv::Size(), f, f, interpolation);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, Resize, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4),
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR),
Interpolation(cv::INTER_CUBIC), Interpolation(cv::INTER_AREA)),
testing::Values(Scale(0.5), Scale(0.3), Scale(2.0))));
GPU_PERF_TEST(ResizeArea, cv::gpu::DeviceInfo, cv::Size, MatType, Scale)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int interpolation = cv::INTER_AREA;
double f = GET_PARAM(3);
cv::Mat src_host(size, type);
fill(src_host, 0, 255);
cv::Mat src(src_host);
cv::Mat dst;
cv::resize(src, dst, cv::Size(), f, f, interpolation);
declare.time(1.0);
TEST_CYCLE()
{
cv::resize(src, dst, cv::Size(), f, f, interpolation);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, ResizeArea, testing::Combine(
ALL_DEVICES,
testing::Values(perf::sz1080p, cv::Size(4096, 2048)),
testing::Values(MatType(CV_8UC1)/*, MatType(CV_8UC3), MatType(CV_8UC4),
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)*/),
testing::Values(Scale(0.2),Scale(0.1),Scale(0.05))));
//////////////////////////////////////////////////////////////////////
// WarpAffine
GPU_PERF_TEST(WarpAffine, cv::gpu::DeviceInfo, cv::Size, MatType, Interpolation, BorderMode)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int interpolation = GET_PARAM(3);
int borderMode = GET_PARAM(4);
cv::Mat src(size, type);
fill(src, 0, 255);
cv::Mat dst;
const double aplha = CV_PI / 4;
double mat[2][3] = { {std::cos(aplha), -std::sin(aplha), src.cols / 2},
{std::sin(aplha), std::cos(aplha), 0}};
cv::Mat M(2, 3, CV_64F, (void*) mat);
cv::warpAffine(src, dst, M, size, interpolation, borderMode);
declare.time(20.0);
TEST_CYCLE()
{
cv::warpAffine(src, dst, M, size, interpolation, borderMode);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, WarpAffine, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4),
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
testing::Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_CONSTANT), BorderMode(cv::BORDER_REFLECT), BorderMode(cv::BORDER_WRAP))));
//////////////////////////////////////////////////////////////////////
// WarpPerspective
GPU_PERF_TEST(WarpPerspective, cv::gpu::DeviceInfo, cv::Size, MatType, Interpolation, BorderMode)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int interpolation = GET_PARAM(3);
int borderMode = GET_PARAM(4);
cv::Mat src(size, type);
fill(src, 0, 255);
cv::Mat dst;
const double aplha = CV_PI / 4;
double mat[3][3] = { {std::cos(aplha), -std::sin(aplha), src.cols / 2},
{std::sin(aplha), std::cos(aplha), 0},
{0.0, 0.0, 1.0}};
cv::Mat M(3, 3, CV_64F, (void*) mat);
cv::warpPerspective(src, dst, M, size, interpolation, borderMode);
declare.time(20.0);
TEST_CYCLE()
{
cv::warpPerspective(src, dst, M, size, interpolation, borderMode);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, WarpPerspective, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4),
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
testing::Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_CONSTANT), BorderMode(cv::BORDER_REFLECT), BorderMode(cv::BORDER_WRAP))));
//////////////////////////////////////////////////////////////////////
// CopyMakeBorder
GPU_PERF_TEST(CopyMakeBorder, cv::gpu::DeviceInfo, cv::Size, MatType, BorderMode)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int borderType = GET_PARAM(3);
cv::Mat src(size, type);
fill(src, 0, 255);
cv::Mat dst;
cv::copyMakeBorder(src, dst, 5, 5, 5, 5, borderType);
TEST_CYCLE()
{
cv::copyMakeBorder(src, dst, 5, 5, 5, 5, borderType);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, CopyMakeBorder, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4),
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
testing::Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_CONSTANT), BorderMode(cv::BORDER_REFLECT), BorderMode(cv::BORDER_WRAP))));
//////////////////////////////////////////////////////////////////////
// Threshold
CV_ENUM(ThreshOp, cv::THRESH_BINARY, cv::THRESH_BINARY_INV, cv::THRESH_TRUNC, cv::THRESH_TOZERO, cv::THRESH_TOZERO_INV)
#define ALL_THRESH_OPS testing::Values(ThreshOp(cv::THRESH_BINARY), ThreshOp(cv::THRESH_BINARY_INV), ThreshOp(cv::THRESH_TRUNC), ThreshOp(cv::THRESH_TOZERO), ThreshOp(cv::THRESH_TOZERO_INV))
GPU_PERF_TEST(Threshold, cv::gpu::DeviceInfo, cv::Size, MatDepth, ThreshOp)
{
cv::Size size = GET_PARAM(1);
int depth = GET_PARAM(2);
int threshOp = GET_PARAM(3);
cv::Mat src(size, depth);
fill(src, 0, 255);
cv::Mat dst;
cv::threshold(src, dst, 100.0, 255.0, threshOp);
TEST_CYCLE()
{
cv::threshold(src, dst, 100.0, 255.0, threshOp);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, Threshold, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32F), MatDepth(CV_64F)),
ALL_THRESH_OPS));
//////////////////////////////////////////////////////////////////////
// Integral
GPU_PERF_TEST(Integral, cv::gpu::DeviceInfo, cv::Size)
{
cv::Size size = GET_PARAM(1);
cv::Mat src(size, CV_8UC1);
fill(src, 0, 255);
cv::Mat dst;
cv::integral(src, dst);
TEST_CYCLE()
{
cv::integral(src, dst);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, Integral, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES));
//////////////////////////////////////////////////////////////////////
// HistEven_OneChannel
GPU_PERF_TEST(HistEven_OneChannel, cv::gpu::DeviceInfo, cv::Size, MatDepth)
{
cv::Size size = GET_PARAM(1);
int depth = GET_PARAM(2);
cv::Mat src(size, depth);
fill(src, 0, 255);
int hbins = 30;
float hranges[] = {0.0f, 180.0f};
cv::Mat hist;
int histSize[] = {hbins};
const float* ranges[] = {hranges};
int channels[] = {0};
cv::calcHist(&src, 1, channels, cv::Mat(), hist, 1, histSize, ranges);
TEST_CYCLE()
{
cv::calcHist(&src, 1, channels, cv::Mat(), hist, 1, histSize, ranges);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, HistEven_OneChannel, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_16S))));
//////////////////////////////////////////////////////////////////////
// EqualizeHist
GPU_PERF_TEST(EqualizeHist, cv::gpu::DeviceInfo, cv::Size)
{
cv::Size size = GET_PARAM(1);
cv::Mat src(size, CV_8UC1);
fill(src, 0, 255);
cv::Mat dst;
cv::equalizeHist(src, dst);
TEST_CYCLE()
{
cv::equalizeHist(src, dst);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, EqualizeHist, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES));
//////////////////////////////////////////////////////////////////////
// Canny
IMPLEMENT_PARAM_CLASS(AppertureSize, int)
IMPLEMENT_PARAM_CLASS(L2gradient, bool)
GPU_PERF_TEST(Canny, cv::gpu::DeviceInfo, AppertureSize, L2gradient)
{
int apperture_size = GET_PARAM(1);
bool useL2gradient = GET_PARAM(2);
cv::Mat image = readImage("perf/1280x1024.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
cv::Mat dst;
cv::Canny(image, dst, 50.0, 100.0, apperture_size, useL2gradient);
TEST_CYCLE()
{
cv::Canny(image, dst, 50.0, 100.0, apperture_size, useL2gradient);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, Canny, testing::Combine(
ALL_DEVICES,
testing::Values(AppertureSize(3), AppertureSize(5)),
testing::Values(L2gradient(false), L2gradient(true))));
//////////////////////////////////////////////////////////////////////
// MeanShiftFiltering
GPU_PERF_TEST_1(MeanShiftFiltering, cv::gpu::DeviceInfo)
{
cv::Mat img = readImage("gpu/meanshift/cones.png");
ASSERT_FALSE(img.empty());
cv::Mat dst;
cv::pyrMeanShiftFiltering(img, dst, 50, 50);
declare.time(15.0);
TEST_CYCLE()
{
cv::pyrMeanShiftFiltering(img, dst, 50, 50);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, MeanShiftFiltering, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////
// Convolve
IMPLEMENT_PARAM_CLASS(KSize, int)
IMPLEMENT_PARAM_CLASS(Ccorr, bool)
GPU_PERF_TEST(Convolve, cv::gpu::DeviceInfo, cv::Size, KSize, Ccorr)
{
cv::Size size = GET_PARAM(1);
int templ_size = GET_PARAM(2);
bool ccorr = GET_PARAM(3);
ASSERT_FALSE(ccorr);
cv::Mat image(size, CV_32FC1);
image.setTo(1.0);
cv::Mat templ(templ_size, templ_size, CV_32FC1);
templ.setTo(1.0);
cv::Mat dst;
cv::filter2D(image, dst, image.depth(), templ);
declare.time(10.0);
TEST_CYCLE()
{
cv::filter2D(image, dst, image.depth(), templ);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, Convolve, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(KSize(3), KSize(9), KSize(17), KSize(27), KSize(32), KSize(64)),
testing::Values(Ccorr(false), Ccorr(true))));
////////////////////////////////////////////////////////////////////////////////
// MatchTemplate_8U
CV_ENUM(TemplateMethod, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED)
#define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_CCOEFF_NORMED))
IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size)
GPU_PERF_TEST(MatchTemplate_8U, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod)
{
cv::Size size = GET_PARAM(1);
cv::Size templ_size = GET_PARAM(2);
int cn = GET_PARAM(3);
int method = GET_PARAM(4);
cv::Mat image(size, CV_MAKE_TYPE(CV_8U, cn));
fill(image, 0, 255);
cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_8U, cn));
fill(templ, 0, 255);
cv::Mat dst;
cv::matchTemplate(image, templ, dst, method);
TEST_CYCLE()
{
cv::matchTemplate(image, templ, dst, method);
}
};
INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate_8U, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))),
testing::Values(Channels(1), Channels(3), Channels(4)),
ALL_TEMPLATE_METHODS));
////////////////////////////////////////////////////////////////////////////////
// MatchTemplate_32F
GPU_PERF_TEST(MatchTemplate_32F, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod)
{
cv::Size size = GET_PARAM(1);
cv::Size templ_size = GET_PARAM(2);
int cn = GET_PARAM(3);
int method = GET_PARAM(4);
cv::Mat image(size, CV_MAKE_TYPE(CV_32F, cn));
fill(image, 0, 255);
cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_32F, cn));
fill(templ, 0, 255);
cv::Mat dst;
cv::matchTemplate(image, templ, dst, method);
TEST_CYCLE()
{
cv::matchTemplate(image, templ, dst, method);
}
};
INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate_32F, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))),
testing::Values(Channels(1), Channels(3), Channels(4)),
testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR))));
//////////////////////////////////////////////////////////////////////
// MulSpectrums
CV_FLAGS(DftFlags, 0, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT)
GPU_PERF_TEST(MulSpectrums, cv::gpu::DeviceInfo, cv::Size, DftFlags)
{
cv::Size size = GET_PARAM(1);
int flag = GET_PARAM(2);
cv::Mat a(size, CV_32FC2);
fill(a, 0, 100);
cv::Mat b(size, CV_32FC2);
fill(b, 0, 100);
cv::Mat dst;
cv::mulSpectrums(a, b, dst, flag);
TEST_CYCLE()
{
cv::mulSpectrums(a, b, dst, flag);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, MulSpectrums, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(DftFlags(0), DftFlags(cv::DFT_ROWS))));
//////////////////////////////////////////////////////////////////////
// Dft
GPU_PERF_TEST(Dft, cv::gpu::DeviceInfo, cv::Size, DftFlags)
{
cv::Size size = GET_PARAM(1);
int flag = GET_PARAM(2);
cv::Mat src(size, CV_32FC2);
fill(src, 0, 100);
cv::Mat dst;
cv::dft(src, dst, flag);
declare.time(10.0);
TEST_CYCLE()
{
cv::dft(src, dst, flag);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, Dft, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(DftFlags(0), DftFlags(cv::DFT_ROWS), DftFlags(cv::DFT_INVERSE))));
//////////////////////////////////////////////////////////////////////
// CornerHarris
IMPLEMENT_PARAM_CLASS(BlockSize, int)
IMPLEMENT_PARAM_CLASS(ApertureSize, int)
GPU_PERF_TEST(CornerHarris, cv::gpu::DeviceInfo, MatType, BorderMode, BlockSize, ApertureSize)
{
int type = GET_PARAM(1);
int borderType = GET_PARAM(2);
int blockSize = GET_PARAM(3);
int apertureSize = GET_PARAM(4);
cv::Mat img = readImage("gpu/stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0);
cv::Mat dst;
double k = 0.5;
cv::cornerHarris(img, dst, blockSize, apertureSize, k, borderType);
TEST_CYCLE()
{
cv::cornerHarris(img, dst, blockSize, apertureSize, k, borderType);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, CornerHarris, testing::Combine(
ALL_DEVICES,
testing::Values(MatType(CV_8UC1), MatType(CV_32FC1)),
testing::Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_REFLECT)),
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)),
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7))));
//////////////////////////////////////////////////////////////////////
// CornerMinEigenVal
GPU_PERF_TEST(CornerMinEigenVal, cv::gpu::DeviceInfo, MatType, BorderMode, BlockSize, ApertureSize)
{
int type = GET_PARAM(1);
int borderType = GET_PARAM(2);
int blockSize = GET_PARAM(3);
int apertureSize = GET_PARAM(4);
cv::Mat img = readImage("gpu/stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0);
cv::Mat dst;
cv::cornerMinEigenVal(img, dst, blockSize, apertureSize, borderType);
TEST_CYCLE()
{
cv::cornerMinEigenVal(img, dst, blockSize, apertureSize, borderType);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, CornerMinEigenVal, testing::Combine(
ALL_DEVICES,
testing::Values(MatType(CV_8UC1), MatType(CV_32FC1)),
testing::Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_REFLECT)),
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)),
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7))));
//////////////////////////////////////////////////////////////////////
// PyrDown
GPU_PERF_TEST(PyrDown, cv::gpu::DeviceInfo, cv::Size, MatType)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
cv::Mat src(size, type);
fill(src, 0, 255);
cv::Mat dst;
cv::pyrDown(src, dst);
TEST_CYCLE()
{
cv::pyrDown(src, dst);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, PyrDown, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4),
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4))));
//////////////////////////////////////////////////////////////////////
// PyrUp
GPU_PERF_TEST(PyrUp, cv::gpu::DeviceInfo, cv::Size, MatType)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
cv::Mat src(size, type);
fill(src, 0, 255);
cv::Mat dst;
cv::pyrUp(src, dst);
TEST_CYCLE()
{
cv::pyrUp(src, dst);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, PyrUp, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4),
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4))));
//////////////////////////////////////////////////////////////////////
// CvtColor
GPU_PERF_TEST(CvtColor, cv::gpu::DeviceInfo, cv::Size, MatDepth, CvtColorInfo)
{
cv::Size size = GET_PARAM(1);
int depth = GET_PARAM(2);
CvtColorInfo info = GET_PARAM(3);
cv::Mat src(size, CV_MAKETYPE(depth, info.scn));
fill(src, 0, 255);
cv::Mat dst;
cv::cvtColor(src, dst, info.code, info.dcn);
TEST_CYCLE()
{
cv::cvtColor(src, dst, info.code, info.dcn);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, CvtColor, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32F)),
testing::Values(CvtColorInfo(4, 4, cv::COLOR_RGBA2BGRA),
CvtColorInfo(4, 1, cv::COLOR_BGRA2GRAY),
CvtColorInfo(1, 4, cv::COLOR_GRAY2BGRA),
CvtColorInfo(3, 3, cv::COLOR_BGR2XYZ),
CvtColorInfo(3, 3, cv::COLOR_XYZ2BGR),
CvtColorInfo(3, 3, cv::COLOR_BGR2YCrCb),
CvtColorInfo(3, 3, cv::COLOR_YCrCb2BGR),
CvtColorInfo(3, 3, cv::COLOR_BGR2YUV),
CvtColorInfo(3, 3, cv::COLOR_YUV2BGR),
CvtColorInfo(3, 3, cv::COLOR_BGR2HSV),
CvtColorInfo(3, 3, cv::COLOR_HSV2BGR),
CvtColorInfo(3, 3, cv::COLOR_BGR2HLS),
CvtColorInfo(3, 3, cv::COLOR_HLS2BGR),
CvtColorInfo(3, 3, cv::COLOR_BGR2Lab),
CvtColorInfo(3, 3, cv::COLOR_RGB2Lab),
CvtColorInfo(3, 3, cv::COLOR_BGR2Luv),
CvtColorInfo(3, 3, cv::COLOR_RGB2Luv),
CvtColorInfo(3, 3, cv::COLOR_Lab2BGR),
CvtColorInfo(3, 3, cv::COLOR_Lab2RGB),
CvtColorInfo(3, 3, cv::COLOR_Luv2BGR),
CvtColorInfo(3, 3, cv::COLOR_Luv2RGB),
CvtColorInfo(1, 3, cv::COLOR_BayerBG2BGR),
CvtColorInfo(1, 3, cv::COLOR_BayerGB2BGR),
CvtColorInfo(1, 3, cv::COLOR_BayerRG2BGR),
CvtColorInfo(1, 3, cv::COLOR_BayerGR2BGR),
CvtColorInfo(4, 4, cv::COLOR_RGBA2mRGBA))));
//////////////////////////////////////////////////////////////////////
// HoughLines
IMPLEMENT_PARAM_CLASS(DoSort, bool)
GPU_PERF_TEST(HoughLines, cv::gpu::DeviceInfo, cv::Size, DoSort)
{
declare.time(30.0);
const cv::Size size = GET_PARAM(1);
const float rho = 1.0f;
const float theta = CV_PI / 180.0f;
const int threshold = 300;
cv::RNG rng(123456789);
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0));
const int numLines = rng.uniform(500, 2000);
for (int i = 0; i < numLines; ++i)
{
cv::Point p1(rng.uniform(0, src.cols), rng.uniform(0, src.rows));
cv::Point p2(rng.uniform(0, src.cols), rng.uniform(0, src.rows));
cv::line(src, p1, p2, cv::Scalar::all(255), 2);
}
std::vector<cv::Vec2f> lines;
cv::HoughLines(src, lines, rho, theta, threshold);
TEST_CYCLE()
{
cv::HoughLines(src, lines, rho, theta, threshold);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, HoughLines, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(DoSort(false), DoSort(true))));
#endif

View File

@ -1,158 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//M*/
#include "perf_precomp.hpp"
#ifdef HAVE_CUDA
namespace {
struct GreedyLabeling
{
struct dot
{
int x;
int y;
static dot make(int i, int j)
{
dot d; d.x = i; d.y = j;
return d;
}
};
struct InInterval
{
InInterval(const int& _lo, const int& _hi) : lo(-_lo), hi(_hi) {};
const int lo, hi;
bool operator() (const unsigned char a, const unsigned char b) const
{
int d = a - b;
return lo <= d && d <= hi;
}
};
GreedyLabeling(cv::Mat img)
: image(img), _labels(image.size(), CV_32SC1, cv::Scalar::all(-1)) {stack = new dot[image.cols * image.rows];}
~GreedyLabeling(){delete[] stack;}
void operator() (cv::Mat labels) const
{
labels.setTo(cv::Scalar::all(-1));
InInterval inInt(0, 2);
int cc = -1;
int* dist_labels = (int*)labels.data;
int pitch = labels.step1();
unsigned char* source = (unsigned char*)image.data;
int width = image.cols;
int height = image.rows;
for (int j = 0; j < image.rows; ++j)
for (int i = 0; i < image.cols; ++i)
{
if (dist_labels[j * pitch + i] != -1) continue;
dot* top = stack;
dot p = dot::make(i, j);
cc++;
dist_labels[j * pitch + i] = cc;
while (top >= stack)
{
int* dl = &dist_labels[p.y * pitch + p.x];
unsigned char* sp = &source[p.y * image.step1() + p.x];
dl[0] = cc;
//right
if( p.x < (width - 1) && dl[ +1] == -1 && inInt(sp[0], sp[+1]))
*top++ = dot::make(p.x + 1, p.y);
//left
if( p.x > 0 && dl[-1] == -1 && inInt(sp[0], sp[-1]))
*top++ = dot::make(p.x - 1, p.y);
//bottom
if( p.y < (height - 1) && dl[+pitch] == -1 && inInt(sp[0], sp[+image.step1()]))
*top++ = dot::make(p.x, p.y + 1);
//top
if( p.y > 0 && dl[-pitch] == -1 && inInt(sp[0], sp[-image.step1()]))
*top++ = dot::make(p.x, p.y - 1);
p = *--top;
}
}
}
cv::Mat image;
cv::Mat _labels;
dot* stack;
};
}
GPU_PERF_TEST(ConnectedComponents, cv::gpu::DeviceInfo, cv::Size)
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat image = readImage("gpu/labeling/aloe-disp.png", cv::IMREAD_GRAYSCALE);
GreedyLabeling host(image);
host(host._labels);
declare.time(1.0);
TEST_CYCLE()
{
host(host._labels);
}
}
INSTANTIATE_TEST_CASE_P(Labeling, ConnectedComponents, testing::Combine(ALL_DEVICES, testing::Values(cv::Size(261, 262))));
#endif

View File

@ -1,20 +0,0 @@
#include "perf_cpu_precomp.hpp"
#ifdef HAVE_CUDA
int main(int argc, char **argv)
{
testing::InitGoogleTest(&argc, argv);
perf::TestBase::Init(argc, argv);
return RUN_ALL_TESTS();
}
#else
int main()
{
printf("OpenCV was built without CUDA support\n");
return 0;
}
#endif

View File

@ -1,124 +0,0 @@
#include "perf_cpu_precomp.hpp"
#ifdef HAVE_CUDA
//////////////////////////////////////////////////////////////////////
// SetTo
GPU_PERF_TEST(SetTo, cv::gpu::DeviceInfo, cv::Size, MatType)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
cv::Mat src(size, type);
cv::Scalar val(1, 2, 3, 4);
src.setTo(val);
TEST_CYCLE()
{
src.setTo(val);
}
}
INSTANTIATE_TEST_CASE_P(MatOp, SetTo, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4),
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4),
MatType(CV_64FC1), MatType(CV_64FC3), MatType(CV_64FC4))));
//////////////////////////////////////////////////////////////////////
// SetToMasked
GPU_PERF_TEST(SetToMasked, cv::gpu::DeviceInfo, cv::Size, MatType)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
cv::Mat src(size, type);
fill(src, 0, 255);
cv::Mat mask(size, CV_8UC1);
fill(mask, 0, 2);
cv::Scalar val(1, 2, 3, 4);
src.setTo(val, mask);
TEST_CYCLE()
{
src.setTo(val, mask);
}
}
INSTANTIATE_TEST_CASE_P(MatOp, SetToMasked, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4),
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4),
MatType(CV_64FC1), MatType(CV_64FC3), MatType(CV_64FC4))));
//////////////////////////////////////////////////////////////////////
// CopyToMasked
GPU_PERF_TEST(CopyToMasked, cv::gpu::DeviceInfo, cv::Size, MatType)
{
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
cv::Mat src(size, type);
fill(src, 0, 255);
cv::Mat mask(size, CV_8UC1);
fill(mask, 0, 2);
cv::Mat dst;
src.copyTo(dst, mask);
TEST_CYCLE()
{
src.copyTo(dst, mask);
}
}
INSTANTIATE_TEST_CASE_P(MatOp, CopyToMasked, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4),
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4),
MatType(CV_64FC1), MatType(CV_64FC3), MatType(CV_64FC4))));
//////////////////////////////////////////////////////////////////////
// ConvertTo
GPU_PERF_TEST(ConvertTo, cv::gpu::DeviceInfo, cv::Size, MatDepth, MatDepth)
{
cv::Size size = GET_PARAM(1);
int depth1 = GET_PARAM(2);
int depth2 = GET_PARAM(3);
cv::Mat src(size, depth1);
fill(src, 0, 255);
cv::Mat dst;
src.convertTo(dst, depth2, 0.5, 1.0);
TEST_CYCLE()
{
src.convertTo(dst, depth2, 0.5, 1.0);
}
}
INSTANTIATE_TEST_CASE_P(MatOp, ConvertTo, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32F), MatDepth(CV_64F)),
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32F), MatDepth(CV_64F))));
#endif

View File

@ -1,74 +0,0 @@
#include "perf_cpu_precomp.hpp"
#ifdef HAVE_CUDA
///////////////////////////////////////////////////////////////
// HOG
GPU_PERF_TEST_1(HOG, cv::gpu::DeviceInfo)
{
cv::Mat img = readImage("gpu/hog/road.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
std::vector<cv::Rect> found_locations;
cv::HOGDescriptor hog;
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
hog.detectMultiScale(img, found_locations);
TEST_CYCLE()
{
hog.detectMultiScale(img, found_locations);
}
}
INSTANTIATE_TEST_CASE_P(ObjDetect, HOG, ALL_DEVICES);
///////////////////////////////////////////////////////////////
// HaarClassifier
GPU_PERF_TEST_1(HaarClassifier, cv::gpu::DeviceInfo)
{
cv::Mat img = readImage("gpu/haarcascade/group_1_640x480_VGA.pgm", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
cv::CascadeClassifier cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml")));
std::vector<cv::Rect> rects;
cascade.detectMultiScale(img, rects);
TEST_CYCLE()
{
cascade.detectMultiScale(img, rects);
}
}
INSTANTIATE_TEST_CASE_P(ObjDetect, HaarClassifier, ALL_DEVICES);
//===================== LBP cascade ==========================//
GPU_PERF_TEST_1(LBPClassifier, cv::gpu::DeviceInfo)
{
cv::Mat img = readImage("gpu/haarcascade/group_1_640x480_VGA.pgm", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
cv::CascadeClassifier cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml")));
std::vector<cv::Rect> rects;
cascade.detectMultiScale(img, rects);
TEST_CYCLE()
{
cascade.detectMultiScale(img, rects);
}
}
INSTANTIATE_TEST_CASE_P(ObjDetect, LBPClassifier, ALL_DEVICES);
#endif

View File

@ -1,220 +0,0 @@
#include "perf_cpu_precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::gpu;
void fill(Mat& m, double a, double b)
{
RNG rng(123456789);
rng.fill(m, RNG::UNIFORM, a, b);
}
void PrintTo(const CvtColorInfo& info, ostream* os)
{
static const char* str[] =
{
"BGR2BGRA",
"BGRA2BGR",
"BGR2RGBA",
"RGBA2BGR",
"BGR2RGB",
"BGRA2RGBA",
"BGR2GRAY",
"RGB2GRAY",
"GRAY2BGR",
"GRAY2BGRA",
"BGRA2GRAY",
"RGBA2GRAY",
"BGR2BGR565",
"RGB2BGR565",
"BGR5652BGR",
"BGR5652RGB",
"BGRA2BGR565",
"RGBA2BGR565",
"BGR5652BGRA",
"BGR5652RGBA",
"GRAY2BGR565",
"BGR5652GRAY",
"BGR2BGR555",
"RGB2BGR555",
"BGR5552BGR",
"BGR5552RGB",
"BGRA2BGR555",
"RGBA2BGR555",
"BGR5552BGRA",
"BGR5552RGBA",
"GRAY2BGR555",
"BGR5552GRAY",
"BGR2XYZ",
"RGB2XYZ",
"XYZ2BGR",
"XYZ2RGB",
"BGR2YCrCb",
"RGB2YCrCb",
"YCrCb2BGR",
"YCrCb2RGB",
"BGR2HSV",
"RGB2HSV",
"",
"",
"BGR2Lab",
"RGB2Lab",
"BayerBG2BGR",
"BayerGB2BGR",
"BayerRG2BGR",
"BayerGR2BGR",
"BGR2Luv",
"RGB2Luv",
"BGR2HLS",
"RGB2HLS",
"HSV2BGR",
"HSV2RGB",
"Lab2BGR",
"Lab2RGB",
"Luv2BGR",
"Luv2RGB",
"HLS2BGR",
"HLS2RGB",
"BayerBG2BGR_VNG",
"BayerGB2BGR_VNG",
"BayerRG2BGR_VNG",
"BayerGR2BGR_VNG",
"BGR2HSV_FULL",
"RGB2HSV_FULL",
"BGR2HLS_FULL",
"RGB2HLS_FULL",
"HSV2BGR_FULL",
"HSV2RGB_FULL",
"HLS2BGR_FULL",
"HLS2RGB_FULL",
"LBGR2Lab",
"LRGB2Lab",
"LBGR2Luv",
"LRGB2Luv",
"Lab2LBGR",
"Lab2LRGB",
"Luv2LBGR",
"Luv2LRGB",
"BGR2YUV",
"RGB2YUV",
"YUV2BGR",
"YUV2RGB",
"BayerBG2GRAY",
"BayerGB2GRAY",
"BayerRG2GRAY",
"BayerGR2GRAY",
//YUV 4:2:0 formats family
"YUV2RGB_NV12",
"YUV2BGR_NV12",
"YUV2RGB_NV21",
"YUV2BGR_NV21",
"YUV2RGBA_NV12",
"YUV2BGRA_NV12",
"YUV2RGBA_NV21",
"YUV2BGRA_NV21",
"YUV2RGB_YV12",
"YUV2BGR_YV12",
"YUV2RGB_IYUV",
"YUV2BGR_IYUV",
"YUV2RGBA_YV12",
"YUV2BGRA_YV12",
"YUV2RGBA_IYUV",
"YUV2BGRA_IYUV",
"YUV2GRAY_420",
//YUV 4:2:2 formats family
"YUV2RGB_UYVY",
"YUV2BGR_UYVY",
"YUV2RGB_VYUY",
"YUV2BGR_VYUY",
"YUV2RGBA_UYVY",
"YUV2BGRA_UYVY",
"YUV2RGBA_VYUY",
"YUV2BGRA_VYUY",
"YUV2RGB_YUY2",
"YUV2BGR_YUY2",
"YUV2RGB_YVYU",
"YUV2BGR_YVYU",
"YUV2RGBA_YUY2",
"YUV2BGRA_YUY2",
"YUV2RGBA_YVYU",
"YUV2BGRA_YVYU",
"YUV2GRAY_UYVY",
"YUV2GRAY_YUY2",
// alpha premultiplication
"RGBA2mRGBA",
"mRGBA2RGBA",
"COLORCVT_MAX"
};
*os << str[info.code];
}
void cv::gpu::PrintTo(const DeviceInfo& info, ostream* os)
{
*os << info.name();
}
Mat readImage(const string& fileName, int flags)
{
return imread(perf::TestBase::getDataPath(fileName), flags);
}
const vector<DeviceInfo>& devices()
{
static vector<DeviceInfo> devs;
static bool first = true;
if (first)
{
int deviceCount = getCudaEnabledDeviceCount();
devs.reserve(deviceCount);
for (int i = 0; i < deviceCount; ++i)
{
DeviceInfo info(i);
if (info.isCompatible())
devs.push_back(info);
}
first = false;
}
return devs;
}

View File

@ -1,77 +0,0 @@
#ifndef __OPENCV_PERF_GPU_UTILITY_HPP__
#define __OPENCV_PERF_GPU_UTILITY_HPP__
void fill(cv::Mat& m, double a, double b);
using perf::MatType;
using perf::MatDepth;
CV_ENUM(BorderMode, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP)
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_AREA)
CV_ENUM(NormType, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_HAMMING)
struct CvtColorInfo
{
int scn;
int dcn;
int code;
explicit CvtColorInfo(int scn_=0, int dcn_=0, int code_=0) : scn(scn_), dcn(dcn_), code(code_) {}
};
void PrintTo(const CvtColorInfo& info, std::ostream* os);
#define IMPLEMENT_PARAM_CLASS(name, type) \
class name \
{ \
public: \
name ( type arg = type ()) : val_(arg) {} \
operator type () const {return val_;} \
private: \
type val_; \
}; \
inline void PrintTo( name param, std::ostream* os) \
{ \
*os << #name << " = " << testing::PrintToString(static_cast< type >(param)); \
}
IMPLEMENT_PARAM_CLASS(Channels, int)
namespace cv { namespace gpu
{
void PrintTo(const cv::gpu::DeviceInfo& info, std::ostream* os);
}}
#define GPU_PERF_TEST(name, ...) \
struct name : perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > \
{ \
public: \
name() {} \
protected: \
void PerfTestBody(); \
}; \
TEST_P(name, perf){ RunPerfTestBody(); } \
void name :: PerfTestBody()
#define GPU_PERF_TEST_1(name, param_type) \
struct name : perf::TestBaseWithParam< param_type > \
{ \
public: \
name() {} \
protected: \
void PerfTestBody(); \
}; \
TEST_P(name, perf){ RunPerfTestBody(); } \
void name :: PerfTestBody()
#define GPU_TYPICAL_MAT_SIZES testing::Values(perf::szSXGA, perf::sz1080p, cv::Size(1800, 1500))
cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR);
const std::vector<cv::gpu::DeviceInfo>& devices();
#define ALL_DEVICES testing::ValuesIn(devices())
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
#endif // __OPENCV_PERF_GPU_UTILITY_HPP__

View File

@ -1,466 +0,0 @@
#include "perf_cpu_precomp.hpp"
#ifdef HAVE_CUDA
//////////////////////////////////////////////////////
// GoodFeaturesToTrack
IMPLEMENT_PARAM_CLASS(MinDistance, double)
GPU_PERF_TEST(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance)
{
double minDistance = GET_PARAM(1);
cv::Mat image = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
cv::Mat corners;
cv::goodFeaturesToTrack(image, corners, 8000, 0.01, minDistance);
TEST_CYCLE()
{
cv::goodFeaturesToTrack(image, corners, 8000, 0.01, minDistance);
}
}
INSTANTIATE_TEST_CASE_P(Video, GoodFeaturesToTrack, testing::Combine(
ALL_DEVICES,
testing::Values(MinDistance(0.0), MinDistance(3.0))));
//////////////////////////////////////////////////////
// PyrLKOpticalFlowSparse
IMPLEMENT_PARAM_CLASS(GraySource, bool)
IMPLEMENT_PARAM_CLASS(Points, int)
IMPLEMENT_PARAM_CLASS(WinSize, int)
IMPLEMENT_PARAM_CLASS(Levels, int)
IMPLEMENT_PARAM_CLASS(Iters, int)
GPU_PERF_TEST(PyrLKOpticalFlowSparse, cv::gpu::DeviceInfo, GraySource, Points, WinSize, Levels, Iters)
{
bool useGray = GET_PARAM(1);
int points = GET_PARAM(2);
int win_size = GET_PARAM(3);
int levels = GET_PARAM(4);
int iters = GET_PARAM(5);
cv::Mat frame0 = readImage("gpu/opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("gpu/opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame1.empty());
cv::Mat gray_frame;
if (useGray)
gray_frame = frame0;
else
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
cv::Mat pts;
cv::goodFeaturesToTrack(gray_frame, pts, points, 0.01, 0.0);
cv::Mat nextPts;
cv::Mat status;
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(),
cv::Size(win_size, win_size), levels - 1,
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01));
declare.time(20.0);
TEST_CYCLE()
{
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(),
cv::Size(win_size, win_size), levels - 1,
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01));
}
}
INSTANTIATE_TEST_CASE_P(Video, PyrLKOpticalFlowSparse, testing::Combine(
ALL_DEVICES,
testing::Values(GraySource(true), GraySource(false)),
testing::Values(Points(1000), Points(2000), Points(4000), Points(8000)),
testing::Values(WinSize(9), WinSize(13), WinSize(17), WinSize(21)),
testing::Values(Levels(1), Levels(2), Levels(3)),
testing::Values(Iters(1), Iters(10), Iters(30))));
//////////////////////////////////////////////////////
// FarnebackOpticalFlowTest
GPU_PERF_TEST_1(FarnebackOpticalFlowTest, cv::gpu::DeviceInfo)
{
cv::Mat frame0 = readImage("gpu/opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("gpu/opticalflow/frame1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
cv::Mat flow;
int numLevels = 5;
double pyrScale = 0.5;
int winSize = 13;
int numIters = 10;
int polyN = 5;
double polySigma = 1.1;
int flags = 0;
cv::calcOpticalFlowFarneback(frame0, frame1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags);
declare.time(10);
TEST_CYCLE()
{
cv::calcOpticalFlowFarneback(frame0, frame1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags);
}
}
INSTANTIATE_TEST_CASE_P(Video, FarnebackOpticalFlowTest, ALL_DEVICES);
//////////////////////////////////////////////////////
// FGDStatModel
namespace cv
{
template<> void Ptr<CvBGStatModel>::delete_obj()
{
cvReleaseBGStatModel(&obj);
}
}
GPU_PERF_TEST(FGDStatModel, cv::gpu::DeviceInfo, std::string)
{
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1));
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cap >> frame;
ASSERT_FALSE(frame.empty());
IplImage ipl_frame = frame;
cv::Ptr<CvBGStatModel> model(cvCreateFGDStatModel(&ipl_frame));
declare.time(60);
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
ipl_frame = frame;
startTimer();
next();
cvUpdateBGStatModel(&ipl_frame, model);
stopTimer();
}
}
INSTANTIATE_TEST_CASE_P(Video, FGDStatModel, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi"))));
//////////////////////////////////////////////////////
// MOG
IMPLEMENT_PARAM_CLASS(LearningRate, double)
GPU_PERF_TEST(MOG, cv::gpu::DeviceInfo, std::string, Channels, LearningRate)
{
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1));
int cn = GET_PARAM(2);
double learningRate = GET_PARAM(3);
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cv::BackgroundSubtractorMOG mog;
cv::Mat foreground;
cap >> frame;
ASSERT_FALSE(frame.empty());
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
mog(frame, foreground, learningRate);
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
startTimer(); next();
mog(frame, foreground, learningRate);
stopTimer();
}
}
INSTANTIATE_TEST_CASE_P(Video, MOG, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")),
testing::Values(Channels(1), Channels(3)/*, Channels(4)*/),
testing::Values(LearningRate(0.0), LearningRate(0.01))));
//////////////////////////////////////////////////////
// MOG2
GPU_PERF_TEST(MOG2_update, cv::gpu::DeviceInfo, std::string, Channels)
{
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1));
int cn = GET_PARAM(2);
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cv::BackgroundSubtractorMOG2 mog2;
cv::Mat foreground;
cap >> frame;
ASSERT_FALSE(frame.empty());
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
mog2(frame, foreground);
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
startTimer(); next();
mog2(frame, foreground);
stopTimer();
}
}
INSTANTIATE_TEST_CASE_P(Video, MOG2_update, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")),
testing::Values(Channels(1), Channels(3)/*, Channels(4)*/)));
GPU_PERF_TEST(MOG2_getBackgroundImage, cv::gpu::DeviceInfo, std::string, Channels)
{
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1));
int cn = GET_PARAM(2);
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cv::BackgroundSubtractorMOG2 mog2;
cv::Mat foreground;
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
mog2(frame, foreground);
}
cv::Mat background;
mog2.getBackgroundImage(background);
TEST_CYCLE()
{
mog2.getBackgroundImage(background);
}
}
INSTANTIATE_TEST_CASE_P(Video, MOG2_getBackgroundImage, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")),
testing::Values(/*Channels(1),*/ Channels(3)/*, Channels(4)*/)));
//////////////////////////////////////////////////////
// GMG
IMPLEMENT_PARAM_CLASS(MaxFeatures, int)
GPU_PERF_TEST(GMG, cv::gpu::DeviceInfo, std::string, Channels, MaxFeatures)
{
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1));
int cn = GET_PARAM(2);
int maxFeatures = GET_PARAM(3);
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cap >> frame;
ASSERT_FALSE(frame.empty());
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
cv::Mat fgmask;
cv::Mat zeros(frame.size(), CV_8UC1, cv::Scalar::all(0));
cv::BackgroundSubtractorGMG gmg;
gmg.set("maxFeatures", maxFeatures);
gmg.initialize(frame.size(), 0.0, 255.0);
gmg(frame, fgmask);
for (int i = 0; i < 150; ++i)
{
cap >> frame;
if (frame.empty())
{
cap.open(inputFile);
cap >> frame;
}
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
startTimer(); next();
gmg(frame, fgmask);
stopTimer();
}
}
INSTANTIATE_TEST_CASE_P(Video, GMG, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")),
testing::Values(Channels(1), Channels(3), Channels(4)),
testing::Values(MaxFeatures(20), MaxFeatures(40), MaxFeatures(60))));
//////////////////////////////////////////////////////
// VideoWriter
#ifdef WIN32
GPU_PERF_TEST(VideoWriter, cv::gpu::DeviceInfo, std::string)
{
const double FPS = 25.0;
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1));
std::string outputFile = cv::tempfile(".avi");
cv::VideoCapture reader(inputFile);
ASSERT_TRUE( reader.isOpened() );
cv::VideoWriter writer;
cv::Mat frame;
declare.time(30);
for (int i = 0; i < 10; ++i)
{
reader >> frame;
ASSERT_FALSE(frame.empty());
if (!writer.isOpened())
writer.open(outputFile, CV_FOURCC('X', 'V', 'I', 'D'), FPS, frame.size());
startTimer(); next();
writer.write(frame);
stopTimer();
}
}
INSTANTIATE_TEST_CASE_P(Video, VideoWriter, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi"))));
#endif // WIN32
//////////////////////////////////////////////////////
// VideoReader
GPU_PERF_TEST(VideoReader, cv::gpu::DeviceInfo, std::string)
{
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1));
cv::VideoCapture reader(inputFile);
ASSERT_TRUE( reader.isOpened() );
cv::Mat frame;
reader >> frame;
declare.time(20);
TEST_CYCLE_N(10)
{
reader >> frame;
}
}
INSTANTIATE_TEST_CASE_P(Video, VideoReader, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi"))));
#endif