fix for bug #3068 (PCA::computeVar for double input):
The matrix g can have CV_32F or CV_64F type, but g.at uses only float template. This fix adds specialization for double type.
This commit is contained in:
parent
b84296c02e
commit
a4750f49c6
@ -2855,9 +2855,9 @@ PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComp
|
|||||||
|
|
||||||
if( _mean.data )
|
if( _mean.data )
|
||||||
{
|
{
|
||||||
CV_Assert( _mean.size() == mean_sz );
|
CV_Assert( _mean.size() == mean_sz );
|
||||||
_mean.convertTo(mean, ctype);
|
_mean.convertTo(mean, ctype);
|
||||||
covar_flags |= CV_COVAR_USE_AVG;
|
covar_flags |= CV_COVAR_USE_AVG;
|
||||||
}
|
}
|
||||||
|
|
||||||
calcCovarMatrix( data, covar, mean, covar_flags, ctype );
|
calcCovarMatrix( data, covar, mean, covar_flags, ctype );
|
||||||
@ -2901,6 +2901,36 @@ PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComp
|
|||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
int computeCumulativeEnergy(const Mat& eigenvalues, double retainedVariance)
|
||||||
|
{
|
||||||
|
CV_DbgAssert( eigenvalues.type() == DataType<T>::type );
|
||||||
|
|
||||||
|
Mat g(eigenvalues.size(), DataType<T>::type);
|
||||||
|
|
||||||
|
for(int ig = 0; ig < g.rows; ig++)
|
||||||
|
{
|
||||||
|
g.at<T>(ig, 0) = 0;
|
||||||
|
for(int im = 0; im <= ig; im++)
|
||||||
|
{
|
||||||
|
g.at<T>(ig,0) += eigenvalues.at<T>(im,0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int L;
|
||||||
|
|
||||||
|
for(L = 0; L < eigenvalues.rows; L++)
|
||||||
|
{
|
||||||
|
double energy = g.at<T>(L, 0) / g.at<T>(g.rows - 1, 0);
|
||||||
|
if(energy > retainedVariance)
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
L = std::max(2, L);
|
||||||
|
|
||||||
|
return L;
|
||||||
|
}
|
||||||
|
|
||||||
PCA& PCA::computeVar(InputArray _data, InputArray __mean, int flags, double retainedVariance)
|
PCA& PCA::computeVar(InputArray _data, InputArray __mean, int flags, double retainedVariance)
|
||||||
{
|
{
|
||||||
Mat data = _data.getMat(), _mean = __mean.getMat();
|
Mat data = _data.getMat(), _mean = __mean.getMat();
|
||||||
@ -2977,26 +3007,11 @@ PCA& PCA::computeVar(InputArray _data, InputArray __mean, int flags, double reta
|
|||||||
}
|
}
|
||||||
|
|
||||||
// compute the cumulative energy content for each eigenvector
|
// compute the cumulative energy content for each eigenvector
|
||||||
Mat g(eigenvalues.size(), ctype);
|
|
||||||
|
|
||||||
for(int ig = 0; ig < g.rows; ig++)
|
|
||||||
{
|
|
||||||
g.at<float>(ig,0) = 0;
|
|
||||||
for(int im = 0; im <= ig; im++)
|
|
||||||
{
|
|
||||||
g.at<float>(ig,0) += eigenvalues.at<float>(im,0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
int L;
|
int L;
|
||||||
for(L = 0; L < eigenvalues.rows; L++)
|
if (ctype == CV_32F)
|
||||||
{
|
L = computeCumulativeEnergy<float>(eigenvalues, retainedVariance);
|
||||||
double energy = g.at<float>(L, 0) / g.at<float>(g.rows - 1, 0);
|
else
|
||||||
if(energy > retainedVariance)
|
L = computeCumulativeEnergy<double>(eigenvalues, retainedVariance);
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
L = std::max(2, L);
|
|
||||||
|
|
||||||
// use clone() to physically copy the data and thus deallocate the original matrices
|
// use clone() to physically copy the data and thus deallocate the original matrices
|
||||||
eigenvalues = eigenvalues.rowRange(0,L).clone();
|
eigenvalues = eigenvalues.rowRange(0,L).clone();
|
||||||
|
Loading…
x
Reference in New Issue
Block a user